- API reference
- DataFrame
- pandas.DataF...
pandas.DataFrame.kurt#
- DataFrame.kurt(axis=0,skipna=True,numeric_only=False,**kwargs)[source]#
Return unbiased kurtosis over requested axis.
Kurtosis obtained using Fisher’s definition ofkurtosis (kurtosis of normal == 0.0). Normalized by N-1.
- Parameters:
- axis{index (0), columns (1)}
Axis for the function to be applied on.ForSeries this parameter is unused and defaults to 0.
For DataFrames, specifying
axis=None
will apply the aggregationacross both axes.Added in version 2.0.0.
- skipnabool, default True
Exclude NA/null values when computing the result.
- numeric_onlybool, default False
Include only float, int, boolean columns. Not implemented for Series.
- **kwargs
Additional keyword arguments to be passed to the function.
- Returns:
- Series or scalar
Examples
>>>s=pd.Series([1,2,2,3],index=['cat','dog','dog','mouse'])>>>scat 1dog 2dog 2mouse 3dtype: int64>>>s.kurt()1.5
With a DataFrame
>>>df=pd.DataFrame({'a':[1,2,2,3],'b':[3,4,4,4]},...index=['cat','dog','dog','mouse'])>>>df a b cat 1 3 dog 2 4 dog 2 4mouse 3 4>>>df.kurt()a 1.5b 4.0dtype: float64
With axis=None
>>>df.kurt(axis=None).round(6)-0.988693
Using axis=1
>>>df=pd.DataFrame({'a':[1,2],'b':[3,4],'c':[3,4],'d':[1,2]},...index=['cat','dog'])>>>df.kurt(axis=1)cat -6.0dog -6.0dtype: float64
On this page