- API reference
- DataFrame
- pandas.DataFrame.div
pandas.DataFrame.div#
- DataFrame.div(other,axis='columns',level=None,fill_value=None)[source]#
Get Floating division of dataframe and other, element-wise (binary operatortruediv).
Equivalent to
dataframe/other
, but with support to substitute a fill_valuefor missing data in one of the inputs. With reverse version,rtruediv.Among flexible wrappers (add,sub,mul,div,floordiv,mod,pow) toarithmetic operators:+,-,*,/,//,%,**.
- Parameters:
- otherscalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns.(1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on thepassed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed forsuccessful DataFrame alignment, with this value before computation.If data in both corresponding DataFrame locations is missingthe result will be missing.
- Returns:
- DataFrame
Result of the arithmetic operation.
See also
DataFrame.add
Add DataFrames.
DataFrame.sub
Subtract DataFrames.
DataFrame.mul
Multiply DataFrames.
DataFrame.div
Divide DataFrames (float division).
DataFrame.truediv
Divide DataFrames (float division).
DataFrame.floordiv
Divide DataFrames (integer division).
DataFrame.mod
Calculate modulo (remainder after division).
DataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
>>>df=pd.DataFrame({'angles':[0,3,4],...'degrees':[360,180,360]},...index=['circle','triangle','rectangle'])>>>df angles degreescircle 0 360triangle 3 180rectangle 4 360
Add a scalar with operator version which return the sameresults.
>>>df+1 angles degreescircle 1 361triangle 4 181rectangle 5 361
>>>df.add(1) angles degreescircle 1 361triangle 4 181rectangle 5 361
Divide by constant with reverse version.
>>>df.div(10) angles degreescircle 0.0 36.0triangle 0.3 18.0rectangle 0.4 36.0
>>>df.rdiv(10) angles degreescircle inf 0.027778triangle 3.333333 0.055556rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>>df-[1,2] angles degreescircle -1 358triangle 2 178rectangle 3 358
>>>df.sub([1,2],axis='columns') angles degreescircle -1 358triangle 2 178rectangle 3 358
>>>df.sub(pd.Series([1,1,1],index=['circle','triangle','rectangle']),...axis='index') angles degreescircle -1 359triangle 2 179rectangle 3 359
Multiply a dictionary by axis.
>>>df.mul({'angles':0,'degrees':2}) angles degreescircle 0 720triangle 0 360rectangle 0 720
>>>df.mul({'circle':0,'triangle':2,'rectangle':3},axis='index') angles degreescircle 0 0triangle 6 360rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>>other=pd.DataFrame({'angles':[0,3,4]},...index=['circle','triangle','rectangle'])>>>other anglescircle 0triangle 3rectangle 4
>>>df*other angles degreescircle 0 NaNtriangle 9 NaNrectangle 16 NaN
>>>df.mul(other,fill_value=0) angles degreescircle 0 0.0triangle 9 0.0rectangle 16 0.0
Divide by a MultiIndex by level.
>>>df_multindex=pd.DataFrame({'angles':[0,3,4,4,5,6],...'degrees':[360,180,360,360,540,720]},...index=[['A','A','A','B','B','B'],...['circle','triangle','rectangle',...'square','pentagon','hexagon']])>>>df_multindex angles degreesA circle 0 360 triangle 3 180 rectangle 4 360B square 4 360 pentagon 5 540 hexagon 6 720
>>>df.div(df_multindex,level=1,fill_value=0) angles degreesA circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0