- API reference
- DataFrame
- pandas.DataFrame.any
pandas.DataFrame.any#
- DataFrame.any(*,axis=0,bool_only=False,skipna=True,**kwargs)[source]#
Return whether any element is True, potentially over an axis.
Returns False unless there is at least one element within a series oralong a Dataframe axis that is True or equivalent (e.g. non-zero ornon-empty).
- Parameters:
- axis{0 or ‘index’, 1 or ‘columns’, None}, default 0
Indicate which axis or axes should be reduced. ForSeries this parameteris unused and defaults to 0.
0 / ‘index’ : reduce the index, return a Series whose index is theoriginal column labels.
1 / ‘columns’ : reduce the columns, return a Series whose index is theoriginal index.
None : reduce all axes, return a scalar.
- bool_onlybool, default False
Include only boolean columns. Not implemented for Series.
- skipnabool, default True
Exclude NA/null values. If the entire row/column is NA and skipna isTrue, then the result will be False, as for an empty row/column.If skipna is False, then NA are treated as True, because these are notequal to zero.
- **kwargsany, default None
Additional keywords have no effect but might be accepted forcompatibility with NumPy.
- Returns:
- Series or DataFrame
If level is specified, then, DataFrame is returned; otherwise, Seriesis returned.
See also
numpy.any
Numpy version of this method.
Series.any
Return whether any element is True.
Series.all
Return whether all elements are True.
DataFrame.any
Return whether any element is True over requested axis.
DataFrame.all
Return whether all elements are True over requested axis.
Examples
Series
For Series input, the output is a scalar indicating whether any elementis True.
>>>pd.Series([False,False]).any()False>>>pd.Series([True,False]).any()True>>>pd.Series([],dtype="float64").any()False>>>pd.Series([np.nan]).any()False>>>pd.Series([np.nan]).any(skipna=False)True
DataFrame
Whether each column contains at least one True element (the default).
>>>df=pd.DataFrame({"A":[1,2],"B":[0,2],"C":[0,0]})>>>df A B C0 1 0 01 2 2 0
>>>df.any()A TrueB TrueC Falsedtype: bool
Aggregating over the columns.
>>>df=pd.DataFrame({"A":[True,False],"B":[1,2]})>>>df A B0 True 11 False 2
>>>df.any(axis='columns')0 True1 Truedtype: bool
>>>df=pd.DataFrame({"A":[True,False],"B":[1,0]})>>>df A B0 True 11 False 0
>>>df.any(axis='columns')0 True1 Falsedtype: bool
Aggregating over the entire DataFrame with
axis=None
.>>>df.any(axis=None)True
any for an empty DataFrame is an empty Series.
>>>pd.DataFrame([]).any()Series([], dtype: bool)