- API reference
- Plotting
- pandas.plott...
pandas.plotting.lag_plot#
- pandas.plotting.lag_plot(series,lag=1,ax=None,**kwds)[source]#
Lag plot for time series.
- Parameters:
- seriesSeries
The time series to visualize.
- lagint, default 1
Lag length of the scatter plot.
- axMatplotlib axis object, optional
The matplotlib axis object to use.
- **kwds
Matplotlib scatter method keyword arguments.
- Returns:
- matplotlib.axes.Axes
Examples
Lag plots are most commonly used to look for patterns in time series data.
Given the following time series
>>>np.random.seed(5)>>>x=np.cumsum(np.random.normal(loc=1,scale=5,size=50))>>>s=pd.Series(x)>>>s.plot()

A lag plot with
lag=1returns>>>pd.plotting.lag_plot(s,lag=1)<Axes: xlabel='y(t)', ylabel='y(t + 1)'>

On this page