Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Ctrl+K

pandas.plotting.lag_plot#

pandas.plotting.lag_plot(series,lag=1,ax=None,**kwds)[source]#

Lag plot for time series.

Parameters:
seriesSeries

The time series to visualize.

lagint, default 1

Lag length of the scatter plot.

axMatplotlib axis object, optional

The matplotlib axis object to use.

**kwds

Matplotlib scatter method keyword arguments.

Returns:
matplotlib.axes.Axes

Examples

Lag plots are most commonly used to look for patterns in time series data.

Given the following time series

>>>np.random.seed(5)>>>x=np.cumsum(np.random.normal(loc=1,scale=5,size=50))>>>s=pd.Series(x)>>>s.plot()
../../_images/pandas-plotting-lag_plot-1.png

A lag plot withlag=1 returns

>>>pd.plotting.lag_plot(s,lag=1)<Axes: xlabel='y(t)', ylabel='y(t + 1)'>
../../_images/pandas-plotting-lag_plot-2.png

[8]ページ先頭

©2009-2025 Movatter.jp