- API reference
- pandas arrays, scalars, and data types
- pandas.array...
pandas.arrays.IntegerArray#
- classpandas.arrays.IntegerArray(values,mask,copy=False)[source]#
Array of integer (optional missing) values.
Uses
pandas.NA
as the missing value.Warning
IntegerArray is currently experimental, and its API or internalimplementation may change without warning.
We represent an IntegerArray with 2 numpy arrays:
data: contains a numpy integer array of the appropriate dtype
mask: a boolean array holding a mask on the data, True is missing
To construct an IntegerArray from generic array-like input, use
pandas.array()
with one of the integer dtypes (see examples).SeeNullable integer data type for more.
- Parameters:
- valuesnumpy.ndarray
A 1-d integer-dtype array.
- masknumpy.ndarray
A 1-d boolean-dtype array indicating missing values.
- copybool, default False
Whether to copy thevalues andmask.
Attributes
None
Methods
None
- Returns:
- IntegerArray
Examples
Create an IntegerArray with
pandas.array()
.>>>int_array=pd.array([1,None,3],dtype=pd.Int32Dtype())>>>int_array<IntegerArray>[1, <NA>, 3]Length: 3, dtype: Int32
String aliases for the dtypes are also available. They are capitalized.
>>>pd.array([1,None,3],dtype='Int32')<IntegerArray>[1, <NA>, 3]Length: 3, dtype: Int32
>>>pd.array([1,None,3],dtype='UInt16')<IntegerArray>[1, <NA>, 3]Length: 3, dtype: UInt16