- API reference
- Series
- pandas.Series.max
pandas.Series.max#
- Series.max(axis=0,skipna=True,numeric_only=False,**kwargs)[source]#
Return the maximum of the values over the requested axis.
If you want theindex of the maximum, use
idxmax. This is the equivalent of thenumpy.ndarraymethodargmax.- Parameters:
- axis{index (0)}
Axis for the function to be applied on.ForSeries this parameter is unused and defaults to 0.
For DataFrames, specifying
axis=Nonewill apply the aggregationacross both axes.Added in version 2.0.0.
- skipnabool, default True
Exclude NA/null values when computing the result.
- numeric_onlybool, default False
Include only float, int, boolean columns. Not implemented for Series.
- **kwargs
Additional keyword arguments to be passed to the function.
- Returns:
- scalar or scalar
See also
Series.sumReturn the sum.
Series.minReturn the minimum.
Series.maxReturn the maximum.
Series.idxminReturn the index of the minimum.
Series.idxmaxReturn the index of the maximum.
DataFrame.sumReturn the sum over the requested axis.
DataFrame.minReturn the minimum over the requested axis.
DataFrame.maxReturn the maximum over the requested axis.
DataFrame.idxminReturn the index of the minimum over the requested axis.
DataFrame.idxmaxReturn the index of the maximum over the requested axis.
Examples
>>>idx=pd.MultiIndex.from_arrays([...['warm','warm','cold','cold'],...['dog','falcon','fish','spider']],...names=['blooded','animal'])>>>s=pd.Series([4,2,0,8],name='legs',index=idx)>>>sblooded animalwarm dog 4 falcon 2cold fish 0 spider 8Name: legs, dtype: int64
>>>s.max()8