- API reference
- Series
- pandas.Series.all
pandas.Series.all#
- Series.all(axis=0,bool_only=False,skipna=True,**kwargs)[source]#
Return whether all elements are True, potentially over an axis.
Returns True unless there at least one element within a series oralong a Dataframe axis that is False or equivalent (e.g. zero orempty).
- Parameters:
- axis{0 or ‘index’, 1 or ‘columns’, None}, default 0
Indicate which axis or axes should be reduced. ForSeries this parameteris unused and defaults to 0.
0 / ‘index’ : reduce the index, return a Series whose index is theoriginal column labels.
1 / ‘columns’ : reduce the columns, return a Series whose index is theoriginal index.
None : reduce all axes, return a scalar.
- bool_onlybool, default False
Include only boolean columns. Not implemented for Series.
- skipnabool, default True
Exclude NA/null values. If the entire row/column is NA and skipna isTrue, then the result will be True, as for an empty row/column.If skipna is False, then NA are treated as True, because these are notequal to zero.
- **kwargsany, default None
Additional keywords have no effect but might be accepted forcompatibility with NumPy.
- Returns:
- scalar or Series
If level is specified, then, Series is returned; otherwise, scalaris returned.
See also
Series.all
Return True if all elements are True.
DataFrame.any
Return True if one (or more) elements are True.
Examples
Series
>>>pd.Series([True,True]).all()True>>>pd.Series([True,False]).all()False>>>pd.Series([],dtype="float64").all()True>>>pd.Series([np.nan]).all()True>>>pd.Series([np.nan]).all(skipna=False)True
DataFrames
Create a dataframe from a dictionary.
>>>df=pd.DataFrame({'col1':[True,True],'col2':[True,False]})>>>df col1 col20 True True1 True False
Default behaviour checks if values in each column all return True.
>>>df.all()col1 Truecol2 Falsedtype: bool
Specify
axis='columns'
to check if values in each row all return True.>>>df.all(axis='columns')0 True1 Falsedtype: bool
Or
axis=None
for whether every value is True.>>>df.all(axis=None)False