- API reference
- Index objects
- pandas.Index.isna
pandas.Index.isna#
- finalIndex.isna()[source]#
Detect missing values.
Return a boolean same-sized object indicating if the values are NA.NA values, such as
None
,numpy.NaN
orpd.NaT
, getmapped toTrue
values.Everything else get mapped toFalse
values. Characters such asempty strings‘’ ornumpy.inf
are not considered NA values.- Returns:
- numpy.ndarray[bool]
A boolean array of whether my values are NA.
See also
Index.notna
Boolean inverse of isna.
Index.dropna
Omit entries with missing values.
isna
Top-level isna.
Series.isna
Detect missing values in Series object.
Examples
Show which entries in a pandas.Index are NA. The result is anarray.
>>>idx=pd.Index([5.2,6.0,np.nan])>>>idxIndex([5.2, 6.0, nan], dtype='float64')>>>idx.isna()array([False, False, True])
Empty strings are not considered NA values. None is considered an NAvalue.
>>>idx=pd.Index(['black','','red',None])>>>idxIndex(['black', '', 'red', None], dtype='object')>>>idx.isna()array([False, False, False, True])
For datetimes,NaT (Not a Time) is considered as an NA value.
>>>idx=pd.DatetimeIndex([pd.Timestamp('1940-04-25'),...pd.Timestamp(''),None,pd.NaT])>>>idxDatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]', freq=None)>>>idx.isna()array([False, True, True, True])
On this page