- API reference
- DataFrame
- pandas.DataF...
pandas.DataFrame.to_numpy#
- DataFrame.to_numpy(dtype=None,copy=False,na_value=<no_default>)[source]#
Convert the DataFrame to a NumPy array.
By default, the dtype of the returned array will be the common NumPydtype of all types in the DataFrame. For example, if the dtypes are
float16
andfloat32
, the results dtype will befloat32
.This may require copying data and coercing values, which may beexpensive.- Parameters:
- dtypestr or numpy.dtype, optional
The dtype to pass to
numpy.asarray()
.- copybool, default False
Whether to ensure that the returned value is not a view onanother array. Note that
copy=False
does notensure thatto_numpy()
is no-copy. Rather,copy=True
ensure thata copy is made, even if not strictly necessary.- na_valueAny, optional
The value to use for missing values. The default value dependsondtype and the dtypes of the DataFrame columns.
- Returns:
- numpy.ndarray
See also
Series.to_numpy
Similar method for Series.
Examples
>>>pd.DataFrame({"A":[1,2],"B":[3,4]}).to_numpy()array([[1, 3], [2, 4]])
With heterogeneous data, the lowest common type will have tobe used.
>>>df=pd.DataFrame({"A":[1,2],"B":[3.0,4.5]})>>>df.to_numpy()array([[1. , 3. ], [2. , 4.5]])
For a mix of numeric and non-numeric types, the output array willhave object dtype.
>>>df['C']=pd.date_range('2000',periods=2)>>>df.to_numpy()array([[1, 3.0, Timestamp('2000-01-01 00:00:00')], [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object)