- API reference
- DataFrame
- pandas.DataF...
pandas.DataFrame.plot.line#
- DataFrame.plot.line(x=None,y=None,**kwargs)[source]#
Plot Series or DataFrame as lines.
This function is useful to plot lines using DataFrame’s valuesas coordinates.
- Parameters:
- xlabel or position, optional
Allows plotting of one column versus another. If not specified,the index of the DataFrame is used.
- ylabel or position, optional
Allows plotting of one column versus another. If not specified,all numerical columns are used.
- colorstr, array-like, or dict, optional
The color for each of the DataFrame’s columns. Possible values are:
- A single color string referred to by name, RGB or RGBA code,
for instance ‘red’ or ‘#a98d19’.
- A sequence of color strings referred to by name, RGB or RGBA
code, which will be used for each column recursively. Forinstance [‘green’,’yellow’] each column’s line will be filled ingreen or yellow, alternatively. If there is only a single column tobe plotted, then only the first color from the color list will beused.
- A dict of the form {column namecolor}, so that each column will be
colored accordingly. For example, if your columns are calleda andb, then passing {‘a’: ‘green’, ‘b’: ‘red’} will color lines forcolumna in green and lines for columnb in red.
- **kwargs
Additional keyword arguments are documented in
DataFrame.plot()
.
- Returns:
- matplotlib.axes.Axes or np.ndarray of them
An ndarray is returned with one
matplotlib.axes.Axes
per column whensubplots=True
.
See also
matplotlib.pyplot.plot
Plot y versus x as lines and/or markers.
Examples
>>>s=pd.Series([1,3,2])>>>s.plot.line()
The following example shows the populations for some animalsover the years.
>>>df=pd.DataFrame({...'pig':[20,18,489,675,1776],...'horse':[4,25,281,600,1900]...},index=[1990,1997,2003,2009,2014])>>>lines=df.plot.line()
An example with subplots, so an array of axes is returned.
>>>axes=df.plot.line(subplots=True)>>>type(axes)<class 'numpy.ndarray'>
Let’s repeat the same example, but specifying colors foreach column (in this case, for each animal).
>>>axes=df.plot.line(...subplots=True,color={"pig":"pink","horse":"#742802"}...)
The following example shows the relationship between bothpopulations.
>>>lines=df.plot.line(x='pig',y='horse')