- API reference
- DataFrame
- pandas.DataF...
pandas.DataFrame.drop_duplicates#
- DataFrame.drop_duplicates(subset=None,*,keep='first',inplace=False,ignore_index=False)[source]#
Return DataFrame with duplicate rows removed.
Considering certain columns is optional. Indexes, including time indexesare ignored.
- Parameters:
- subsetcolumn label or sequence of labels, optional
Only consider certain columns for identifying duplicates, bydefault use all of the columns.
- keep{‘first’, ‘last’,
False
}, default ‘first’ Determines which duplicates (if any) to keep.
‘first’ : Drop duplicates except for the first occurrence.
‘last’ : Drop duplicates except for the last occurrence.
False
: Drop all duplicates.
- inplacebool, default
False
Whether to modify the DataFrame rather than creating a new one.
- ignore_indexbool, default
False
If
True
, the resulting axis will be labeled 0, 1, …, n - 1.
- Returns:
- DataFrame or None
DataFrame with duplicates removed or None if
inplace=True
.
See also
DataFrame.value_counts
Count unique combinations of columns.
Examples
Consider dataset containing ramen rating.
>>>df=pd.DataFrame({...'brand':['Yum Yum','Yum Yum','Indomie','Indomie','Indomie'],...'style':['cup','cup','cup','pack','pack'],...'rating':[4,4,3.5,15,5]...})>>>df brand style rating0 Yum Yum cup 4.01 Yum Yum cup 4.02 Indomie cup 3.53 Indomie pack 15.04 Indomie pack 5.0
By default, it removes duplicate rows based on all columns.
>>>df.drop_duplicates() brand style rating0 Yum Yum cup 4.02 Indomie cup 3.53 Indomie pack 15.04 Indomie pack 5.0
To remove duplicates on specific column(s), use
subset
.>>>df.drop_duplicates(subset=['brand']) brand style rating0 Yum Yum cup 4.02 Indomie cup 3.5
To remove duplicates and keep last occurrences, use
keep
.>>>df.drop_duplicates(subset=['brand','style'],keep='last') brand style rating1 Yum Yum cup 4.02 Indomie cup 3.54 Indomie pack 5.0