- API reference
- DataFrame
- pandas.DataF...
pandas.DataFrame.describe#
- DataFrame.describe(percentiles=None,include=None,exclude=None)[source]#
Generate descriptive statistics.
Descriptive statistics include those that summarize the centraltendency, dispersion and shape of adataset’s distribution, excluding
NaN
values.Analyzes both numeric and object series, as wellas
DataFrame
column sets of mixed data types. The outputwill vary depending on what is provided. Refer to the notesbelow for more detail.- Parameters:
- percentileslist-like of numbers, optional
The percentiles to include in the output. All shouldfall between 0 and 1. The default is
[.25,.5,.75]
, which returns the 25th, 50th, and75th percentiles.- include‘all’, list-like of dtypes or None (default), optional
A white list of data types to include in the result. Ignoredfor
Series
. Here are the options:‘all’ : All columns of the input will be included in the output.
A list-like of dtypes : Limits the results to theprovided data types.To limit the result to numeric types submit
numpy.number
. To limit it instead to object columns submitthenumpy.object
data type. Stringscan also be used in the style ofselect_dtypes
(e.g.df.describe(include=['O'])
). Toselect pandas categorical columns, use'category'
None (default) : The result will include all numeric columns.
- excludelist-like of dtypes or None (default), optional,
A black list of data types to omit from the result. Ignoredfor
Series
. Here are the options:A list-like of dtypes : Excludes the provided data typesfrom the result. To exclude numeric types submit
numpy.number
. To exclude object columns submit the datatypenumpy.object
. Strings can also be used in the style ofselect_dtypes
(e.g.df.describe(exclude=['O'])
). Toexclude pandas categorical columns, use'category'
None (default) : The result will exclude nothing.
- Returns:
- Series or DataFrame
Summary statistics of the Series or Dataframe provided.
See also
DataFrame.count
Count number of non-NA/null observations.
DataFrame.max
Maximum of the values in the object.
DataFrame.min
Minimum of the values in the object.
DataFrame.mean
Mean of the values.
DataFrame.std
Standard deviation of the observations.
DataFrame.select_dtypes
Subset of a DataFrame including/excluding columns based on their dtype.
Notes
For numeric data, the result’s index will include
count
,mean
,std
,min
,max
as well as lower,50
andupper percentiles. By default the lower percentile is25
and theupper percentile is75
. The50
percentile is thesame as the median.For object data (e.g. strings or timestamps), the result’s indexwill include
count
,unique
,top
, andfreq
. Thetop
is the most common value. Thefreq
is the most common value’sfrequency. Timestamps also include thefirst
andlast
items.If multiple object values have the highest count, then the
count
andtop
results will be arbitrarily chosen fromamong those with the highest count.For mixed data types provided via a
DataFrame
, the default is toreturn only an analysis of numeric columns. If the dataframe consistsonly of object and categorical data without any numeric columns, thedefault is to return an analysis of both the object and categoricalcolumns. Ifinclude='all'
is provided as an option, the resultwill include a union of attributes of each type.Theinclude andexclude parameters can be used to limitwhich columns in a
DataFrame
are analyzed for the output.The parameters are ignored when analyzing aSeries
.Examples
Describing a numeric
Series
.>>>s=pd.Series([1,2,3])>>>s.describe()count 3.0mean 2.0std 1.0min 1.025% 1.550% 2.075% 2.5max 3.0dtype: float64
Describing a categorical
Series
.>>>s=pd.Series(['a','a','b','c'])>>>s.describe()count 4unique 3top afreq 2dtype: object
Describing a timestamp
Series
.>>>s=pd.Series([...np.datetime64("2000-01-01"),...np.datetime64("2010-01-01"),...np.datetime64("2010-01-01")...])>>>s.describe()count 3mean 2006-09-01 08:00:00min 2000-01-01 00:00:0025% 2004-12-31 12:00:0050% 2010-01-01 00:00:0075% 2010-01-01 00:00:00max 2010-01-01 00:00:00dtype: object
Describing a
DataFrame
. By default only numeric fieldsare returned.>>>df=pd.DataFrame({'categorical':pd.Categorical(['d','e','f']),...'numeric':[1,2,3],...'object':['a','b','c']...})>>>df.describe() numericcount 3.0mean 2.0std 1.0min 1.025% 1.550% 2.075% 2.5max 3.0
Describing all columns of a
DataFrame
regardless of data type.>>>df.describe(include='all') categorical numeric objectcount 3 3.0 3unique 3 NaN 3top f NaN afreq 1 NaN 1mean NaN 2.0 NaNstd NaN 1.0 NaNmin NaN 1.0 NaN25% NaN 1.5 NaN50% NaN 2.0 NaN75% NaN 2.5 NaNmax NaN 3.0 NaN
Describing a column from a
DataFrame
by accessing it asan attribute.>>>df.numeric.describe()count 3.0mean 2.0std 1.0min 1.025% 1.550% 2.075% 2.5max 3.0Name: numeric, dtype: float64
Including only numeric columns in a
DataFrame
description.>>>df.describe(include=[np.number]) numericcount 3.0mean 2.0std 1.0min 1.025% 1.550% 2.075% 2.5max 3.0
Including only string columns in a
DataFrame
description.>>>df.describe(include=[object]) objectcount 3unique 3top afreq 1
Including only categorical columns from a
DataFrame
description.>>>df.describe(include=['category']) categoricalcount 3unique 3top dfreq 1
Excluding numeric columns from a
DataFrame
description.>>>df.describe(exclude=[np.number]) categorical objectcount 3 3unique 3 3top f afreq 1 1
Excluding object columns from a
DataFrame
description.>>>df.describe(exclude=[object]) categorical numericcount 3 3.0unique 3 NaNtop f NaNfreq 1 NaNmean NaN 2.0std NaN 1.0min NaN 1.025% NaN 1.550% NaN 2.075% NaN 2.5max NaN 3.0