- API reference
- General functions
- pandas.concat
pandas.concat#
- pandas.concat(objs,*,axis=0,join='outer',ignore_index=False,keys=None,levels=None,names=None,verify_integrity=False,sort=False,copy=None)[source]#
Concatenate pandas objects along a particular axis.
Allows optional set logic along the other axes.
Can also add a layer of hierarchical indexing on the concatenation axis,which may be useful if the labels are the same (or overlapping) onthe passed axis number.
- Parameters:
- objsa sequence or mapping of Series or DataFrame objects
If a mapping is passed, the sorted keys will be used as thekeysargument, unless it is passed, in which case the values will beselected (see below). Any None objects will be dropped silently unlessthey are all None in which case a ValueError will be raised.
- axis{0/’index’, 1/’columns’}, default 0
The axis to concatenate along.
- join{‘inner’, ‘outer’}, default ‘outer’
How to handle indexes on other axis (or axes).
- ignore_indexbool, default False
If True, do not use the index values along the concatenation axis. Theresulting axis will be labeled 0, …, n - 1. This is useful if you areconcatenating objects where the concatenation axis does not havemeaningful indexing information. Note the index values on the otheraxes are still respected in the join.
- keyssequence, default None
If multiple levels passed, should contain tuples. Constructhierarchical index using the passed keys as the outermost level.
- levelslist of sequences, default None
Specific levels (unique values) to use for constructing aMultiIndex. Otherwise they will be inferred from the keys.
- nameslist, default None
Names for the levels in the resulting hierarchical index.
- verify_integritybool, default False
Check whether the new concatenated axis contains duplicates. This canbe very expensive relative to the actual data concatenation.
- sortbool, default False
Sort non-concatenation axis if it is not already aligned. One exception tothis is when the non-concatentation axis is a DatetimeIndex and join=’outer’and the axis is not already aligned. In that case, the non-concatenationaxis is always sorted lexicographically.
- copybool, default True
If False, do not copy data unnecessarily.
- Returns:
- object, type of objs
When concatenating all
Series
along the index (axis=0), aSeries
is returned. Whenobjs
contains at least oneDataFrame
, aDataFrame
is returned. When concatenating alongthe columns (axis=1), aDataFrame
is returned.
See also
DataFrame.join
Join DataFrames using indexes.
DataFrame.merge
Merge DataFrames by indexes or columns.
Notes
The keys, levels, and names arguments are all optional.
A walkthrough of how this method fits in with other tools for combiningpandas objects can be foundhere.
It is not recommended to build DataFrames by adding single rows in afor loop. Build a list of rows and make a DataFrame in a single concat.
Examples
Combine two
Series
.>>>s1=pd.Series(['a','b'])>>>s2=pd.Series(['c','d'])>>>pd.concat([s1,s2])0 a1 b0 c1 ddtype: object
Clear the existing index and reset it in the resultby setting the
ignore_index
option toTrue
.>>>pd.concat([s1,s2],ignore_index=True)0 a1 b2 c3 ddtype: object
Add a hierarchical index at the outermost level ofthe data with the
keys
option.>>>pd.concat([s1,s2],keys=['s1','s2'])s1 0 a 1 bs2 0 c 1 ddtype: object
Label the index keys you create with the
names
option.>>>pd.concat([s1,s2],keys=['s1','s2'],...names=['Series name','Row ID'])Series name Row IDs1 0 a 1 bs2 0 c 1 ddtype: object
Combine two
DataFrame
objects with identical columns.>>>df1=pd.DataFrame([['a',1],['b',2]],...columns=['letter','number'])>>>df1 letter number0 a 11 b 2>>>df2=pd.DataFrame([['c',3],['d',4]],...columns=['letter','number'])>>>df2 letter number0 c 31 d 4>>>pd.concat([df1,df2]) letter number0 a 11 b 20 c 31 d 4
Combine
DataFrame
objects with overlapping columnsand return everything. Columns outside the intersection willbe filled withNaN
values.>>>df3=pd.DataFrame([['c',3,'cat'],['d',4,'dog']],...columns=['letter','number','animal'])>>>df3 letter number animal0 c 3 cat1 d 4 dog>>>pd.concat([df1,df3],sort=False) letter number animal0 a 1 NaN1 b 2 NaN0 c 3 cat1 d 4 dog
Combine
DataFrame
objects with overlapping columnsand return only those that are shared by passinginner
tothejoin
keyword argument.>>>pd.concat([df1,df3],join="inner") letter number0 a 11 b 20 c 31 d 4
Combine
DataFrame
objects horizontally along the x axis bypassing inaxis=1
.>>>df4=pd.DataFrame([['bird','polly'],['monkey','george']],...columns=['animal','name'])>>>pd.concat([df1,df4],axis=1) letter number animal name0 a 1 bird polly1 b 2 monkey george
Prevent the result from including duplicate index values with the
verify_integrity
option.>>>df5=pd.DataFrame([1],index=['a'])>>>df5 0a 1>>>df6=pd.DataFrame([2],index=['a'])>>>df6 0a 2>>>pd.concat([df5,df6],verify_integrity=True)Traceback (most recent call last):...ValueError:Indexes have overlapping values: ['a']
Append a single row to the end of a
DataFrame
object.>>>df7=pd.DataFrame({'a':1,'b':2},index=[0])>>>df7 a b0 1 2>>>new_row=pd.Series({'a':3,'b':4})>>>new_rowa 3b 4dtype: int64>>>pd.concat([df7,new_row.to_frame().T],ignore_index=True) a b0 1 21 3 4