- API reference
- Input/output
- pandas.read_xml
pandas.read_xml#
- pandas.read_xml(path_or_buffer,*,xpath='./*',namespaces=None,elems_only=False,attrs_only=False,names=None,dtype=None,converters=None,parse_dates=None,encoding='utf-8',parser='lxml',stylesheet=None,iterparse=None,compression='infer',storage_options=None,dtype_backend=<no_default>)[source]#
Read XML document into a
DataFrame
object.Added in version 1.3.0.
- Parameters:
- path_or_bufferstr, path object, or file-like object
String, path object (implementing
os.PathLike[str]
), or file-likeobject implementing aread()
function. The string can be any valid XMLstring or a path. The string can further be a URL. Valid URL schemesinclude http, ftp, s3, and file.Deprecated since version 2.1.0:Passing xml literal strings is deprecated.Wrap literal xml input in
io.StringIO
orio.BytesIO
instead.- xpathstr, optional, default ‘./*’
The
XPath
to parse required set of nodes for migration toDataFrame
.``XPath`` should return a collection of elementsand not a single element. Note: Theetree
parser supports limitedXPath
expressions. For more complexXPath
, uselxml
which requiresinstallation.- namespacesdict, optional
The namespaces defined in XML document as dicts with key beingnamespace prefix and value the URI. There is no need to include allnamespaces in XML, only the ones used in
xpath
expression.Note: if XML document uses default namespace denoted asxmlns=’<URI>’ without a prefix, you must assign any temporarynamespace prefix such as ‘doc’ to the URI in order to parseunderlying nodes and/or attributes. For example,namespaces={"doc":"https://example.com"}
- elems_onlybool, optional, default False
Parse only the child elements at the specified
xpath
. By default,all child elements and non-empty text nodes are returned.- attrs_onlybool, optional, default False
Parse only the attributes at the specified
xpath
.By default, all attributes are returned.- nameslist-like, optional
Column names for DataFrame of parsed XML data. Use this parameter torename original element names and distinguish same named elements andattributes.
- dtypeType name or dict of column -> type, optional
Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32,‘c’: ‘Int64’}Usestr orobject together with suitablena_values settingsto preserve and not interpret dtype.If converters are specified, they will be applied INSTEADof dtype conversion.
Added in version 1.5.0.
- convertersdict, optional
Dict of functions for converting values in certain columns. Keys can eitherbe integers or column labels.
Added in version 1.5.0.
- parse_datesbool or list of int or names or list of lists or dict, default False
Identifiers to parse index or columns to datetime. The behavior is as follows:
boolean. If True -> try parsing the index.
list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3each as a separate date column.
list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse asa single date column.
dict, e.g. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and callresult ‘foo’
Added in version 1.5.0.
- encodingstr, optional, default ‘utf-8’
Encoding of XML document.
- parser{‘lxml’,’etree’}, default ‘lxml’
Parser module to use for retrieval of data. Only ‘lxml’ and‘etree’ are supported. With ‘lxml’ more complex
XPath
searchesand ability to use XSLT stylesheet are supported.- stylesheetstr, path object or file-like object
A URL, file-like object, or a raw string containing an XSLT script.This stylesheet should flatten complex, deeply nested XML documentsfor easier parsing. To use this feature you must have
lxml
moduleinstalled and specify ‘lxml’ asparser
. Thexpath
mustreference nodes of transformed XML document generated after XSLTtransformation and not the original XML document. Only XSLT 1.0scripts and not later versions is currently supported.- iterparsedict, optional
The nodes or attributes to retrieve in iterparsing of XML documentas a dict with key being the name of repeating element and value beinglist of elements or attribute names that are descendants of the repeatedelement. Note: If this option is used, it will replace
xpath
parsingand unlikexpath
, descendants do not need to relate to each other but canexist any where in document under the repeating element. This memory-efficient method should be used for very large XML files (500MB, 1GB, or 5GB+).For example,iterparse={"row_element":["child_elem","attr","grandchild_elem"]}
Added in version 1.5.0.
- compressionstr or dict, default ‘infer’
For on-the-fly decompression of on-disk data. If ‘infer’ and ‘path_or_buffer’ ispath-like, then detect compression from the following extensions: ‘.gz’,‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’(otherwise no compression).If using ‘zip’ or ‘tar’, the ZIP file must contain only one data file to be read in.Set to
None
for no decompression.Can also be a dict with key'method'
setto one of {'zip'
,'gzip'
,'bz2'
,'zstd'
,'xz'
,'tar'
} andother key-value pairs are forwarded tozipfile.ZipFile
,gzip.GzipFile
,bz2.BZ2File
,zstandard.ZstdDecompressor
,lzma.LZMAFile
ortarfile.TarFile
, respectively.As an example, the following could be passed for Zstandard decompression using acustom compression dictionary:compression={'method':'zstd','dict_data':my_compression_dict}
.Added in version 1.5.0:Added support for.tar files.
Changed in version 1.4.0:Zstandard support.
- storage_optionsdict, optional
Extra options that make sense for a particular storage connection, e.g.host, port, username, password, etc. For HTTP(S) URLs the key-value pairsare forwarded to
urllib.request.Request
as header options. For otherURLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs areforwarded tofsspec.open
. Please seefsspec
andurllib
for moredetails, and for more examples on storage options referhere.- dtype_backend{‘numpy_nullable’, ‘pyarrow’}, default ‘numpy_nullable’
Back-end data type applied to the resultant
DataFrame
(still experimental). Behaviour is as follows:"numpy_nullable"
: returns nullable-dtype-backedDataFrame
(default)."pyarrow"
: returns pyarrow-backed nullableArrowDtype
DataFrame.
Added in version 2.0.
- Returns:
- df
A DataFrame.
See also
Notes
This method is best designed to import shallow XML documents infollowing format which is the ideal fit for the two-dimensions of a
DataFrame
(row by column).<root><row><column1>data</column1><column2>data</column2><column3>data</column3>...</row><row>...</row>...</root>
As a file format, XML documents can be designed any way includinglayout of elements and attributes as long as it conforms to W3Cspecifications. Therefore, this method is a convenience handler fora specific flatter design and not all possible XML structures.
However, for more complex XML documents,
stylesheet
allows you totemporarily redesign original document with XSLT (a special purposelanguage) for a flatter version for migration to a DataFrame.This function willalways return a single
DataFrame
or raiseexceptions due to issues with XML document,xpath
, or otherparameters.See theread_xml documentation in the IO section of the docs for more information in using this method to parse XMLfiles to DataFrames.
Examples
>>>fromioimportStringIO>>>xml='''<?xml version='1.0' encoding='utf-8'?>...<data xmlns="http://example.com">... <row>... <shape>square</shape>... <degrees>360</degrees>... <sides>4.0</sides>... </row>... <row>... <shape>circle</shape>... <degrees>360</degrees>... <sides/>... </row>... <row>... <shape>triangle</shape>... <degrees>180</degrees>... <sides>3.0</sides>... </row>...</data>'''
>>>df=pd.read_xml(StringIO(xml))>>>df shape degrees sides0 square 360 4.01 circle 360 NaN2 triangle 180 3.0
>>>xml='''<?xml version='1.0' encoding='utf-8'?>...<data>... <row shape="square" degrees="360" sides="4.0"/>... <row shape="circle" degrees="360"/>... <row shape="triangle" degrees="180" sides="3.0"/>...</data>'''
>>>df=pd.read_xml(StringIO(xml),xpath=".//row")>>>df shape degrees sides0 square 360 4.01 circle 360 NaN2 triangle 180 3.0
>>>xml='''<?xml version='1.0' encoding='utf-8'?>...<doc:data xmlns:doc="https://example.com">... <doc:row>... <doc:shape>square</doc:shape>... <doc:degrees>360</doc:degrees>... <doc:sides>4.0</doc:sides>... </doc:row>... <doc:row>... <doc:shape>circle</doc:shape>... <doc:degrees>360</doc:degrees>... <doc:sides/>... </doc:row>... <doc:row>... <doc:shape>triangle</doc:shape>... <doc:degrees>180</doc:degrees>... <doc:sides>3.0</doc:sides>... </doc:row>...</doc:data>'''
>>>df=pd.read_xml(StringIO(xml),...xpath="//doc:row",...namespaces={"doc":"https://example.com"})>>>df shape degrees sides0 square 360 4.01 circle 360 NaN2 triangle 180 3.0
>>>xml_data='''... <data>... <row>... <index>0</index>... <a>1</a>... <b>2.5</b>... <c>True</c>... <d>a</d>... <e>2019-12-31 00:00:00</e>... </row>... <row>... <index>1</index>... <b>4.5</b>... <c>False</c>... <d>b</d>... <e>2019-12-31 00:00:00</e>... </row>... </data>... '''
>>>df=pd.read_xml(StringIO(xml_data),...dtype_backend="numpy_nullable",...parse_dates=["e"])>>>df index a b c d e0 0 1 2.5 True a 2019-12-311 1 <NA> 4.5 False b 2019-12-31