- API reference
- General functions
- pandas.notna
pandas.notna#
- pandas.notna(obj)[source]#
Detect non-missing values for an array-like object.
This function takes a scalar or array-like object and indicateswhether values are valid (not missing, which is
NaN
in numericarrays,None
orNaN
in object arrays,NaT
in datetimelike).- Parameters:
- objarray-like or object value
Object to check fornot null ornon-missing values.
- Returns:
- bool or array-like of bool
For scalar input, returns a scalar boolean.For array input, returns an array of boolean indicating whether eachcorresponding element is valid.
See also
isna
Boolean inverse of pandas.notna.
Series.notna
Detect valid values in a Series.
DataFrame.notna
Detect valid values in a DataFrame.
Index.notna
Detect valid values in an Index.
Examples
Scalar arguments (including strings) result in a scalar boolean.
>>>pd.notna('dog')True
>>>pd.notna(pd.NA)False
>>>pd.notna(np.nan)False
ndarrays result in an ndarray of booleans.
>>>array=np.array([[1,np.nan,3],[4,5,np.nan]])>>>arrayarray([[ 1., nan, 3.], [ 4., 5., nan]])>>>pd.notna(array)array([[ True, False, True], [ True, True, False]])
For indexes, an ndarray of booleans is returned.
>>>index=pd.DatetimeIndex(["2017-07-05","2017-07-06",None,..."2017-07-08"])>>>indexDatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'], dtype='datetime64[ns]', freq=None)>>>pd.notna(index)array([ True, True, False, True])
For Series and DataFrame, the same type is returned, containing booleans.
>>>df=pd.DataFrame([['ant','bee','cat'],['dog',None,'fly']])>>>df 0 1 20 ant bee cat1 dog None fly>>>pd.notna(df) 0 1 20 True True True1 True False True
>>>pd.notna(df[1])0 True1 FalseName: 1, dtype: bool