- API reference
- pandas arrays, scalars, and data types
- pandas.api.t...
pandas.api.types.is_integer_dtype#
- pandas.api.types.is_integer_dtype(arr_or_dtype)[source]#
Check whether the provided array or dtype is of an integer dtype.
Unlike inis_any_int_dtype, timedelta64 instances will return False.
The nullable Integer dtypes (e.g. pandas.Int64Dtype) are also consideredas integer by this function.
- Parameters:
- arr_or_dtypearray-like or dtype
The array or dtype to check.
- Returns:
- boolean
Whether or not the array or dtype is of an integer dtype andnot an instance of timedelta64.
Examples
>>>frompandas.api.typesimportis_integer_dtype>>>is_integer_dtype(str)False>>>is_integer_dtype(int)True>>>is_integer_dtype(float)False>>>is_integer_dtype(np.uint64)True>>>is_integer_dtype('int8')True>>>is_integer_dtype('Int8')True>>>is_integer_dtype(pd.Int8Dtype)True>>>is_integer_dtype(np.datetime64)False>>>is_integer_dtype(np.timedelta64)False>>>is_integer_dtype(np.array(['a','b']))False>>>is_integer_dtype(pd.Series([1,2]))True>>>is_integer_dtype(np.array([],dtype=np.timedelta64))False>>>is_integer_dtype(pd.Index([1,2.]))# floatFalse
On this page