Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Ctrl+K

pandas.api.types.infer_dtype#

pandas.api.types.infer_dtype(value,skipna=True)#

Return a string label of the type of a scalar or list-like of values.

Parameters:
valuescalar, list, ndarray, or pandas type
skipnabool, default True

Ignore NaN values when inferring the type.

Returns:
str

Describing the common type of the input data.

Results can include:
  • string
  • bytes
  • floating
  • integer
  • mixed-integer
  • mixed-integer-float
  • decimal
  • complex
  • categorical
  • boolean
  • datetime64
  • datetime
  • date
  • timedelta64
  • timedelta
  • time
  • period
  • mixed
  • unknown-array
Raises:
TypeError

If ndarray-like but cannot infer the dtype

Notes

  • ‘mixed’ is the catchall for anything that is not otherwisespecialized

  • ‘mixed-integer-float’ are floats and integers

  • ‘mixed-integer’ are integers mixed with non-integers

  • ‘unknown-array’ is the catchall for something thatis an array (hasa dtype attribute), but has a dtype unknown to pandas (e.g. externalextension array)

Examples

>>>frompandas.api.typesimportinfer_dtype>>>infer_dtype(['foo','bar'])'string'
>>>infer_dtype(['a',np.nan,'b'],skipna=True)'string'
>>>infer_dtype(['a',np.nan,'b'],skipna=False)'mixed'
>>>infer_dtype([b'foo',b'bar'])'bytes'
>>>infer_dtype([1,2,3])'integer'
>>>infer_dtype([1,2,3.5])'mixed-integer-float'
>>>infer_dtype([1.0,2.0,3.5])'floating'
>>>infer_dtype(['a',1])'mixed-integer'
>>>fromdecimalimportDecimal>>>infer_dtype([Decimal(1),Decimal(2.0)])'decimal'
>>>infer_dtype([True,False])'boolean'
>>>infer_dtype([True,False,np.nan])'boolean'
>>>infer_dtype([pd.Timestamp('20130101')])'datetime'
>>>importdatetime>>>infer_dtype([datetime.date(2013,1,1)])'date'
>>>infer_dtype([np.datetime64('2013-01-01')])'datetime64'
>>>infer_dtype([datetime.timedelta(0,1,1)])'timedelta'
>>>infer_dtype(pd.Series(list('aabc')).astype('category'))'categorical'

[8]ページ先頭

©2009-2025 Movatter.jp