- API reference
- pandas arrays, scalars, and data types
- pandas.api.t...
pandas.api.types.infer_dtype#
- pandas.api.types.infer_dtype(value,skipna=True)#
Return a string label of the type of a scalar or list-like of values.
- Parameters:
- valuescalar, list, ndarray, or pandas type
- skipnabool, default True
Ignore NaN values when inferring the type.
- Returns:
- str
Describing the common type of the input data.
- Results can include:
- string
- bytes
- floating
- integer
- mixed-integer
- mixed-integer-float
- decimal
- complex
- categorical
- boolean
- datetime64
- datetime
- date
- timedelta64
- timedelta
- time
- period
- mixed
- unknown-array
- Raises:
- TypeError
If ndarray-like but cannot infer the dtype
Notes
‘mixed’ is the catchall for anything that is not otherwisespecialized
‘mixed-integer-float’ are floats and integers
‘mixed-integer’ are integers mixed with non-integers
‘unknown-array’ is the catchall for something thatis an array (hasa dtype attribute), but has a dtype unknown to pandas (e.g. externalextension array)
Examples
>>>frompandas.api.typesimportinfer_dtype>>>infer_dtype(['foo','bar'])'string'
>>>infer_dtype(['a',np.nan,'b'],skipna=True)'string'
>>>infer_dtype(['a',np.nan,'b'],skipna=False)'mixed'
>>>infer_dtype([b'foo',b'bar'])'bytes'
>>>infer_dtype([1,2,3])'integer'
>>>infer_dtype([1,2,3.5])'mixed-integer-float'
>>>infer_dtype([1.0,2.0,3.5])'floating'
>>>infer_dtype(['a',1])'mixed-integer'
>>>fromdecimalimportDecimal>>>infer_dtype([Decimal(1),Decimal(2.0)])'decimal'
>>>infer_dtype([True,False])'boolean'
>>>infer_dtype([True,False,np.nan])'boolean'
>>>infer_dtype([pd.Timestamp('20130101')])'datetime'
>>>importdatetime>>>infer_dtype([datetime.date(2013,1,1)])'date'
>>>infer_dtype([np.datetime64('2013-01-01')])'datetime64'
>>>infer_dtype([datetime.timedelta(0,1,1)])'timedelta'
>>>infer_dtype(pd.Series(list('aabc')).astype('category'))'categorical'
On this page