- API reference
- Series
- pandas.Series.unique
pandas.Series.unique#
- Series.unique()[source]#
Return unique values of Series object.
Uniques are returned in order of appearance. Hash table-based unique,therefore does NOT sort.
- Returns:
- ndarray or ExtensionArray
The unique values returned as a NumPy array. See Notes.
See also
Series.drop_duplicatesReturn Series with duplicate values removed.
uniqueTop-level unique method for any 1-d array-like object.
Index.uniqueReturn Index with unique values from an Index object.
Notes
Returns the unique values as a NumPy array. In case of anextension-array backed Series, a new
ExtensionArrayof that type with justthe unique values is returned. This includesCategorical
Period
Datetime with Timezone
Datetime without Timezone
Timedelta
Interval
Sparse
IntegerNA
See Examples section.
Examples
>>>pd.Series([2,1,3,3],name='A').unique()array([2, 1, 3])
>>>pd.Series([pd.Timestamp('2016-01-01')for_inrange(3)]).unique()<DatetimeArray>['2016-01-01 00:00:00']Length: 1, dtype: datetime64[ns]
>>>pd.Series([pd.Timestamp('2016-01-01',tz='US/Eastern')...for_inrange(3)]).unique()<DatetimeArray>['2016-01-01 00:00:00-05:00']Length: 1, dtype: datetime64[ns, US/Eastern]
An Categorical will return categories in the order ofappearance and with the same dtype.
>>>pd.Series(pd.Categorical(list('baabc'))).unique()['b', 'a', 'c']Categories (3, object): ['a', 'b', 'c']>>>pd.Series(pd.Categorical(list('baabc'),categories=list('abc'),...ordered=True)).unique()['b', 'a', 'c']Categories (3, object): ['a' < 'b' < 'c']