- API reference
- Series
- pandas.Serie...
pandas.Series.to_xarray#
- Series.to_xarray()[source]#
Return an xarray object from the pandas object.
- Returns:
- xarray.DataArray or xarray.Dataset
Data in the pandas structure converted to Dataset if the object isa DataFrame, or a DataArray if the object is a Series.
See also
DataFrame.to_hdf
Write DataFrame to an HDF5 file.
DataFrame.to_parquet
Write a DataFrame to the binary parquet format.
Notes
See thexarray docs
Examples
>>>df=pd.DataFrame([('falcon','bird',389.0,2),...('parrot','bird',24.0,2),...('lion','mammal',80.5,4),...('monkey','mammal',np.nan,4)],...columns=['name','class','max_speed',...'num_legs'])>>>df name class max_speed num_legs0 falcon bird 389.0 21 parrot bird 24.0 22 lion mammal 80.5 43 monkey mammal NaN 4
>>>df.to_xarray()<xarray.Dataset>Dimensions: (index: 4)Coordinates: * index (index) int64 32B 0 1 2 3Data variables: name (index) object 32B 'falcon' 'parrot' 'lion' 'monkey' class (index) object 32B 'bird' 'bird' 'mammal' 'mammal' max_speed (index) float64 32B 389.0 24.0 80.5 nan num_legs (index) int64 32B 2 2 4 4
>>>df['max_speed'].to_xarray()<xarray.DataArray 'max_speed' (index: 4)>array([389. , 24. , 80.5, nan])Coordinates: * index (index) int64 0 1 2 3
>>>dates=pd.to_datetime(['2018-01-01','2018-01-01',...'2018-01-02','2018-01-02'])>>>df_multiindex=pd.DataFrame({'date':dates,...'animal':['falcon','parrot',...'falcon','parrot'],...'speed':[350,18,361,15]})>>>df_multiindex=df_multiindex.set_index(['date','animal'])
>>>df_multiindex speeddate animal2018-01-01 falcon 350 parrot 182018-01-02 falcon 361 parrot 15
>>>df_multiindex.to_xarray()<xarray.Dataset>Dimensions: (date: 2, animal: 2)Coordinates: * date (date) datetime64[ns] 2018-01-01 2018-01-02 * animal (animal) object 'falcon' 'parrot'Data variables: speed (date, animal) int64 350 18 361 15
On this page