Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Ctrl+K

pandas.Series.reset_index#

Series.reset_index(level=None,*,drop=False,name=<no_default>,inplace=False,allow_duplicates=False)[source]#

Generate a new DataFrame or Series with the index reset.

This is useful when the index needs to be treated as a column, orwhen the index is meaningless and needs to be reset to the defaultbefore another operation.

Parameters:
levelint, str, tuple, or list, default optional

For a Series with a MultiIndex, only remove the specified levelsfrom the index. Removes all levels by default.

dropbool, default False

Just reset the index, without inserting it as a column inthe new DataFrame.

nameobject, optional

The name to use for the column containing the original Seriesvalues. Usesself.name by default. This argument is ignoredwhendrop is True.

inplacebool, default False

Modify the Series in place (do not create a new object).

allow_duplicatesbool, default False

Allow duplicate column labels to be created.

Added in version 1.5.0.

Returns:
Series or DataFrame or None

Whendrop is False (the default), a DataFrame is returned.The newly created columns will come first in the DataFrame,followed by the original Series values.Whendrop is True, aSeries is returned.In either case, ifinplace=True, no value is returned.

See also

DataFrame.reset_index

Analogous function for DataFrame.

Examples

>>>s=pd.Series([1,2,3,4],name='foo',...index=pd.Index(['a','b','c','d'],name='idx'))

Generate a DataFrame with default index.

>>>s.reset_index()  idx  foo0   a    11   b    22   c    33   d    4

To specify the name of the new column usename.

>>>s.reset_index(name='values')  idx  values0   a       11   b       22   c       33   d       4

To generate a new Series with the default setdrop to True.

>>>s.reset_index(drop=True)0    11    22    33    4Name: foo, dtype: int64

Thelevel parameter is interesting for Series with a multi-levelindex.

>>>arrays=[np.array(['bar','bar','baz','baz']),...np.array(['one','two','one','two'])]>>>s2=pd.Series(...range(4),name='foo',...index=pd.MultiIndex.from_arrays(arrays,...names=['a','b']))

To remove a specific level from the Index, uselevel.

>>>s2.reset_index(level='a')       a  foobone  bar    0two  bar    1one  baz    2two  baz    3

Iflevel is not set, all levels are removed from the Index.

>>>s2.reset_index()     a    b  foo0  bar  one    01  bar  two    12  baz  one    23  baz  two    3

[8]ページ先頭

©2009-2025 Movatter.jp