- API reference
- Series
- pandas.Serie...
pandas.Series.plot.hist#
- Series.plot.hist(by=None,bins=10,**kwargs)[source]#
Draw one histogram of the DataFrame’s columns.
A histogram is a representation of the distribution of data.This function groups the values of all given Series in the DataFrameinto bins and draws all bins in one
matplotlib.axes.Axes
.This is useful when the DataFrame’s Series are in a similar scale.- Parameters:
- bystr or sequence, optional
Column in the DataFrame to group by.
Changed in version 1.4.0:Previously,by is silently ignore and makes no groupings
- binsint, default 10
Number of histogram bins to be used.
- **kwargs
Additional keyword arguments are documented in
DataFrame.plot()
.
- Returns:
- class:matplotlib.AxesSubplot
Return a histogram plot.
See also
DataFrame.hist
Draw histograms per DataFrame’s Series.
Series.hist
Draw a histogram with Series’ data.
Examples
When we roll a die 6000 times, we expect to get each value around 1000times. But when we roll two dice and sum the result, the distributionis going to be quite different. A histogram illustrates thosedistributions.
>>>df=pd.DataFrame(np.random.randint(1,7,6000),columns=['one'])>>>df['two']=df['one']+np.random.randint(1,7,6000)>>>ax=df.plot.hist(bins=12,alpha=0.5)
A grouped histogram can be generated by providing the parameterby (whichcan be a column name, or a list of column names):
>>>age_list=[8,10,12,14,72,74,76,78,20,25,30,35,60,85]>>>df=pd.DataFrame({"gender":list("MMMMMMMMFFFFFF"),"age":age_list})>>>ax=df.plot.hist(column=["age"],by="gender",figsize=(10,8))