- API reference
- Series
- pandas.Serie...
pandas.Series.groupby#
- Series.groupby(by=None,axis=0,level=None,as_index=True,sort=True,group_keys=True,observed=<no_default>,dropna=True)[source]#
Group Series using a mapper or by a Series of columns.
A groupby operation involves some combination of splitting theobject, applying a function, and combining the results. This can beused to group large amounts of data and compute operations on thesegroups.
- Parameters:
- bymapping, function, label, pd.Grouper or list of such
Used to determine the groups for the groupby.If
by
is a function, it’s called on each value of the object’sindex. If a dict or Series is passed, the Series or dict VALUESwill be used to determine the groups (the Series’ values are firstaligned; see.align()
method). If a list or ndarray of lengthequal to the selected axis is passed (see thegroupby user guide),the values are used as-is to determine the groups. A label or listof labels may be passed to group by the columns inself
.Notice that a tuple is interpreted as a (single) key.- axis{0 or ‘index’, 1 or ‘columns’}, default 0
Split along rows (0) or columns (1). ForSeries this parameteris unused and defaults to 0.
Deprecated since version 2.1.0:Will be removed and behave like axis=0 in a future version.For
axis=1
, doframe.T.groupby(...)
instead.- levelint, level name, or sequence of such, default None
If the axis is a MultiIndex (hierarchical), group by a particularlevel or levels. Do not specify both
by
andlevel
.- as_indexbool, default True
Return object with group labels as theindex. Only relevant for DataFrame input. as_index=False iseffectively “SQL-style” grouped output. This argument has no effecton filtrations (see thefiltrations in the user guide),such as
head()
,tail()
,nth()
and in transformations(see thetransformations in the user guide).- sortbool, default True
Sort group keys. Get better performance by turning this off.Note this does not influence the order of observations within eachgroup. Groupby preserves the order of rows within each group. If False,the groups will appear in the same order as they did in the original DataFrame.This argument has no effect on filtrations (see thefiltrations in the user guide),such as
head()
,tail()
,nth()
and in transformations(see thetransformations in the user guide).Changed in version 2.0.0:Specifying
sort=False
with an ordered categorical grouper will nolonger sort the values.- group_keysbool, default True
When calling apply and the
by
argument produces a like-indexed(i.e.a transform) result, add group keys toindex to identify pieces. By default group keys are not includedwhen the result’s index (and column) labels match the inputs, andare included otherwise.Changed in version 1.5.0:Warns that
group_keys
will no longer be ignored when theresult fromapply
is a like-indexed Series or DataFrame.Specifygroup_keys
explicitly to include the group keys ornot.Changed in version 2.0.0:
group_keys
now defaults toTrue
.- observedbool, default False
This only applies if any of the groupers are Categoricals.If True: only show observed values for categorical groupers.If False: show all values for categorical groupers.
Deprecated since version 2.1.0:The default value will change to True in a future version of pandas.
- dropnabool, default True
If True, and if group keys contain NA values, NA values togetherwith row/column will be dropped.If False, NA values will also be treated as the key in groups.
- Returns:
- pandas.api.typing.SeriesGroupBy
Returns a groupby object that contains information about the groups.
See also
resample
Convenience method for frequency conversion and resampling of time series.
Notes
See theuser guide for moredetailed usage and examples, including splitting an object into groups,iterating through groups, selecting a group, aggregation, and more.
Examples
>>>ser=pd.Series([390.,350.,30.,20.],...index=['Falcon','Falcon','Parrot','Parrot'],...name="Max Speed")>>>serFalcon 390.0Falcon 350.0Parrot 30.0Parrot 20.0Name: Max Speed, dtype: float64>>>ser.groupby(["a","b","a","b"]).mean()a 210.0b 185.0Name: Max Speed, dtype: float64>>>ser.groupby(level=0).mean()Falcon 370.0Parrot 25.0Name: Max Speed, dtype: float64>>>ser.groupby(ser>100).mean()Max SpeedFalse 25.0True 370.0Name: Max Speed, dtype: float64
Grouping by Indexes
We can groupby different levels of a hierarchical indexusing thelevel parameter:
>>>arrays=[['Falcon','Falcon','Parrot','Parrot'],...['Captive','Wild','Captive','Wild']]>>>index=pd.MultiIndex.from_arrays(arrays,names=('Animal','Type'))>>>ser=pd.Series([390.,350.,30.,20.],index=index,name="Max Speed")>>>serAnimal TypeFalcon Captive 390.0 Wild 350.0Parrot Captive 30.0 Wild 20.0Name: Max Speed, dtype: float64>>>ser.groupby(level=0).mean()AnimalFalcon 370.0Parrot 25.0Name: Max Speed, dtype: float64>>>ser.groupby(level="Type").mean()TypeCaptive 210.0Wild 185.0Name: Max Speed, dtype: float64
We can also choose to includeNA in group keys or not by definingdropna parameter, the default setting isTrue.
>>>ser=pd.Series([1,2,3,3],index=["a",'a','b',np.nan])>>>ser.groupby(level=0).sum()a 3b 3dtype: int64
>>>ser.groupby(level=0,dropna=False).sum()a 3b 3NaN 3dtype: int64
>>>arrays=['Falcon','Falcon','Parrot','Parrot']>>>ser=pd.Series([390.,350.,30.,20.],index=arrays,name="Max Speed")>>>ser.groupby(["a","b","a",np.nan]).mean()a 210.0b 350.0Name: Max Speed, dtype: float64
>>>ser.groupby(["a","b","a",np.nan],dropna=False).mean()a 210.0b 350.0NaN 20.0Name: Max Speed, dtype: float64