- API reference
- Series
- pandas.Serie...
pandas.Series.cat.set_categories#
- Series.cat.set_categories(*args,**kwargs)[source]#
Set the categories to the specified new categories.
new_categoriescan include new categories (which will result inunused categories) or remove old categories (which results in valuesset toNaN). Ifrename=True, the categories will simply be renamed(less or more items than in old categories will result in values set toNaNor in unused categories respectively).This method can be used to perform more than one action of adding,removing, and reordering simultaneously and is therefore faster thanperforming the individual steps via the more specialised methods.
On the other hand this methods does not do checks (e.g., whether theold categories are included in the new categories on a reorder), whichcan result in surprising changes, for example when using special stringdtypes, which does not considers a S1 string equal to a single charpython string.
- Parameters:
- new_categoriesIndex-like
The categories in new order.
- orderedbool, default False
Whether or not the categorical is treated as a ordered categorical.If not given, do not change the ordered information.
- renamebool, default False
Whether or not the new_categories should be considered as a renameof the old categories or as reordered categories.
- Returns:
- Categorical with reordered categories.
- Raises:
- ValueError
If new_categories does not validate as categories
See also
rename_categoriesRename categories.
reorder_categoriesReorder categories.
add_categoriesAdd new categories.
remove_categoriesRemove the specified categories.
remove_unused_categoriesRemove categories which are not used.
Examples
For
pandas.Series:>>>raw_cat=pd.Categorical(['a','b','c','A'],...categories=['a','b','c'],ordered=True)>>>ser=pd.Series(raw_cat)>>>ser0 a1 b2 c3 NaNdtype: categoryCategories (3, object): ['a' < 'b' < 'c']
>>>ser.cat.set_categories(['A','B','C'],rename=True)0 A1 B2 C3 NaNdtype: categoryCategories (3, object): ['A' < 'B' < 'C']
>>>ci=pd.CategoricalIndex(['a','b','c','A'],...categories=['a','b','c'],ordered=True)>>>ciCategoricalIndex(['a', 'b', 'c', nan], categories=['a', 'b', 'c'], ordered=True, dtype='category')
>>>ci.set_categories(['A','b','c'])CategoricalIndex([nan, 'b', 'c', nan], categories=['A', 'b', 'c'], ordered=True, dtype='category')>>>ci.set_categories(['A','b','c'],rename=True)CategoricalIndex(['A', 'b', 'c', nan], categories=['A', 'b', 'c'], ordered=True, dtype='category')