- API reference
- Series
- pandas.Serie...
pandas.Series.cat.categories#
- Series.cat.categories[source]#
The categories of this categorical.
Setting assigns new values to each category (effectively a rename ofeach individual category).
The assigned value has to be a list-like object. All items must beunique and the number of items in the new categories must be the sameas the number of items in the old categories.
- Raises:
- ValueError
If the new categories do not validate as categories or if thenumber of new categories is unequal the number of old categories
See also
rename_categoriesRename categories.
reorder_categoriesReorder categories.
add_categoriesAdd new categories.
remove_categoriesRemove the specified categories.
remove_unused_categoriesRemove categories which are not used.
set_categoriesSet the categories to the specified ones.
Examples
For
pandas.Series:>>>ser=pd.Series(['a','b','c','a'],dtype='category')>>>ser.cat.categoriesIndex(['a', 'b', 'c'], dtype='object')
>>>raw_cat=pd.Categorical(['a','b','c','a'],categories=['b','c','d'])>>>ser=pd.Series(raw_cat)>>>ser.cat.categoriesIndex(['b', 'c', 'd'], dtype='object')
>>>cat=pd.Categorical(['a','b'],ordered=True)>>>cat.categoriesIndex(['a', 'b'], dtype='object')
>>>ci=pd.CategoricalIndex(['a','c','b','a','c','b'])>>>ci.categoriesIndex(['a', 'b', 'c'], dtype='object')
>>>ci=pd.CategoricalIndex(['a','c'],categories=['c','b','a'])>>>ci.categoriesIndex(['c', 'b', 'a'], dtype='object')
On this page