Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Ctrl+K

pandas.Series.array#

propertySeries.array[source]#

The ExtensionArray of the data backing this Series or Index.

Returns:
ExtensionArray

An ExtensionArray of the values stored within. For extensiontypes, this is the actual array. For NumPy native types, thisis a thin (no copy) wrapper aroundnumpy.ndarray.

.array differs from.values, which may require convertingthe data to a different form.

See also

Index.to_numpy

Similar method that always returns a NumPy array.

Series.to_numpy

Similar method that always returns a NumPy array.

Notes

This table lays out the different array types for each extensiondtype within pandas.

dtype

array type

category

Categorical

period

PeriodArray

interval

IntervalArray

IntegerNA

IntegerArray

string

StringArray

boolean

BooleanArray

datetime64[ns, tz]

DatetimeArray

For any 3rd-party extension types, the array type will be anExtensionArray.

For all remaining dtypes.array will be aarrays.NumpyExtensionArray wrapping the actual ndarraystored within. If you absolutely need a NumPy array (possibly withcopying / coercing data), then useSeries.to_numpy() instead.

Examples

For regular NumPy types like int, and float, a NumpyExtensionArrayis returned.

>>>pd.Series([1,2,3]).array<NumpyExtensionArray>[1, 2, 3]Length: 3, dtype: int64

For extension types, like Categorical, the actual ExtensionArrayis returned

>>>ser=pd.Series(pd.Categorical(['a','b','a']))>>>ser.array['a', 'b', 'a']Categories (2, object): ['a', 'b']

[8]ページ先頭

©2009-2025 Movatter.jp