- API reference
- Series
- pandas.Serie...
pandas.Series.__array__#
- Series.__array__(dtype=None,copy=None)[source]#
Return the values as a NumPy array.
Users should not call this directly. Rather, it is invoked by
numpy.array()andnumpy.asarray().- Parameters:
- dtypestr or numpy.dtype, optional
The dtype to use for the resulting NumPy array. By default,the dtype is inferred from the data.
- copybool or None, optional
See
numpy.asarray().
- Returns:
- numpy.ndarray
The values in the series converted to a
numpy.ndarraywith the specifieddtype.
See also
arrayCreate a new array from data.
Series.arrayZero-copy view to the array backing the Series.
Series.to_numpySeries method for similar behavior.
Examples
>>>ser=pd.Series([1,2,3])>>>np.asarray(ser)array([1, 2, 3])
For timezone-aware data, the timezones may be retained with
dtype='object'>>>tzser=pd.Series(pd.date_range('2000',periods=2,tz="CET"))>>>np.asarray(tzser,dtype="object")array([Timestamp('2000-01-01 00:00:00+0100', tz='CET'), Timestamp('2000-01-02 00:00:00+0100', tz='CET')], dtype=object)
Or the values may be localized to UTC and the tzinfo discarded with
dtype='datetime64[ns]'>>>np.asarray(tzser,dtype="datetime64[ns]")array(['1999-12-31T23:00:00.000000000', ...], dtype='datetime64[ns]')
On this page