- API reference
- Input/output
- pandas.HDFStore.put
pandas.HDFStore.put#
- HDFStore.put(key,value,format=None,index=True,append=False,complib=None,complevel=None,min_itemsize=None,nan_rep=None,data_columns=None,encoding=None,errors='strict',track_times=True,dropna=False)[source]#
Store object in HDFStore.
- Parameters:
- keystr
- value{Series, DataFrame}
- format‘fixed(f)|table(t)’, default is ‘fixed’
Format to use when storing object in HDFStore. Value can be one of:
'fixed'Fixed format. Fast writing/reading. Not-appendable, nor searchable.
'table'Table format. Write as a PyTables Table structure which may performworse but allow more flexible operations like searching / selectingsubsets of the data.
- indexbool, default True
Write DataFrame index as a column.
- appendbool, default False
This will force Table format, append the input data to the existing.
- data_columnslist of columns or True, default None
List of columns to create as data columns, or True to use all columns.Seehere.
- encodingstr, default None
Provide an encoding for strings.
- track_timesbool, default True
Parameter is propagated to ‘create_table’ method of ‘PyTables’.If set to False it enables to have the same h5 files (same hashes)independent on creation time.
- dropnabool, default False, optional
Remove missing values.
Examples
>>>df=pd.DataFrame([[1,2],[3,4]],columns=['A','B'])>>>store=pd.HDFStore("store.h5",'w')>>>store.put('data',df)
On this page