Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Ctrl+K

pandas.HDFStore.append#

HDFStore.append(key,value,format=None,axes=None,index=True,append=True,complib=None,complevel=None,columns=None,min_itemsize=None,nan_rep=None,chunksize=None,expectedrows=None,dropna=None,data_columns=None,encoding=None,errors='strict')[source]#

Append to Table in file.

Node must already exist and be Table format.

Parameters:
keystr
value{Series, DataFrame}
format‘table’ is the default

Format to use when storing object in HDFStore. Value can be one of:

'table'

Table format. Write as a PyTables Table structure which may performworse but allow more flexible operations like searching / selectingsubsets of the data.

indexbool, default True

Write DataFrame index as a column.

appendbool, default True

Append the input data to the existing.

data_columnslist of columns, or True, default None

List of columns to create as indexed data columns for on-diskqueries, or True to use all columns. By default only the axesof the object are indexed. Seehere.

min_itemsizedict of columns that specify minimum str sizes
nan_repstr to use as str nan representation
chunksizesize to chunk the writing
expectedrowsexpected TOTAL row size of this table
encodingdefault None, provide an encoding for str
dropnabool, default False, optional

Do not write an ALL nan row to the store settableby the option ‘io.hdf.dropna_table’.

Notes

Doesnot check if data being appended overlaps with existingdata in the table, so be careful

Examples

>>>df1=pd.DataFrame([[1,2],[3,4]],columns=['A','B'])>>>store=pd.HDFStore("store.h5",'w')>>>store.put('data',df1,format='table')>>>df2=pd.DataFrame([[5,6],[7,8]],columns=['A','B'])>>>store.append('data',df2)>>>store.close()   A  B0  1  21  3  40  5  61  7  8

[8]ページ先頭

©2009-2025 Movatter.jp