- API reference
- DataFrame
- pandas.DataF...
pandas.DataFrame.values#
- propertyDataFrame.values[source]#
Return a Numpy representation of the DataFrame.
Warning
We recommend using
DataFrame.to_numpy()
instead.Only the values in the DataFrame will be returned, the axes labelswill be removed.
- Returns:
- numpy.ndarray
The values of the DataFrame.
See also
DataFrame.to_numpy
Recommended alternative to this method.
DataFrame.index
Retrieve the index labels.
DataFrame.columns
Retrieving the column names.
Notes
The dtype will be a lower-common-denominator dtype (implicitupcasting); that is to say if the dtypes (even of numeric types)are mixed, the one that accommodates all will be chosen. Use thiswith care if you are not dealing with the blocks.
e.g. If the dtypes are float16 and float32, dtype will be upcast tofloat32. If dtypes are int32 and uint8, dtype will be upcast toint32. By
numpy.find_common_type()
convention, mixing int64and uint64 will result in a float64 dtype.Examples
A DataFrame where all columns are the same type (e.g., int64) resultsin an array of the same type.
>>>df=pd.DataFrame({'age':[3,29],...'height':[94,170],...'weight':[31,115]})>>>df age height weight0 3 94 311 29 170 115>>>df.dtypesage int64height int64weight int64dtype: object>>>df.valuesarray([[ 3, 94, 31], [ 29, 170, 115]])
A DataFrame with mixed type columns(e.g., str/object, int64, float32)results in an ndarray of the broadest type that accommodates thesemixed types (e.g., object).
>>>df2=pd.DataFrame([('parrot',24.0,'second'),...('lion',80.5,1),...('monkey',np.nan,None)],...columns=('name','max_speed','rank'))>>>df2.dtypesname objectmax_speed float64rank objectdtype: object>>>df2.valuesarray([['parrot', 24.0, 'second'], ['lion', 80.5, 1], ['monkey', nan, None]], dtype=object)