- API reference
- DataFrame
- pandas.DataF...
pandas.DataFrame.to_hdf#
- DataFrame.to_hdf(path_or_buf,*,key,mode='a',complevel=None,complib=None,append=False,format=None,index=True,min_itemsize=None,nan_rep=None,dropna=None,data_columns=None,errors='strict',encoding='UTF-8')[source]#
Write the contained data to an HDF5 file using HDFStore.
Hierarchical Data Format (HDF) is self-describing, allowing anapplication to interpret the structure and contents of a file withno outside information. One HDF file can hold a mix of related objectswhich can be accessed as a group or as individual objects.
In order to add another DataFrame or Series to an existing HDF fileplease use append mode and a different a key.
Warning
One can store a subclass of
DataFrame
orSeries
to HDF5,but the type of the subclass is lost upon storing.For more information see theuser guide.
- Parameters:
- path_or_bufstr or pandas.HDFStore
File path or HDFStore object.
- keystr
Identifier for the group in the store.
- mode{‘a’, ‘w’, ‘r+’}, default ‘a’
Mode to open file:
‘w’: write, a new file is created (an existing file withthe same name would be deleted).
‘a’: append, an existing file is opened for reading andwriting, and if the file does not exist it is created.
‘r+’: similar to ‘a’, but the file must already exist.
- complevel{0-9}, default None
Specifies a compression level for data.A value of 0 or None disables compression.
- complib{‘zlib’, ‘lzo’, ‘bzip2’, ‘blosc’}, default ‘zlib’
Specifies the compression library to be used.These additional compressors for Blosc are supported(default if no compressor specified: ‘blosc:blosclz’):{‘blosc:blosclz’, ‘blosc:lz4’, ‘blosc:lz4hc’, ‘blosc:snappy’,‘blosc:zlib’, ‘blosc:zstd’}.Specifying a compression library which is not available issuesa ValueError.
- appendbool, default False
For Table formats, append the input data to the existing.
- format{‘fixed’, ‘table’, None}, default ‘fixed’
Possible values:
‘fixed’: Fixed format. Fast writing/reading. Not-appendable,nor searchable.
‘table’: Table format. Write as a PyTables Table structurewhich may perform worse but allow more flexible operationslike searching / selecting subsets of the data.
If None, pd.get_option(‘io.hdf.default_format’) is checked,followed by fallback to “fixed”.
- indexbool, default True
Write DataFrame index as a column.
- min_itemsizedict or int, optional
Map column names to minimum string sizes for columns.
- nan_repAny, optional
How to represent null values as str.Not allowed with append=True.
- dropnabool, default False, optional
Remove missing values.
- data_columnslist of columns or True, optional
List of columns to create as indexed data columns for on-diskqueries, or True to use all columns. By default only the axesof the object are indexed. SeeQuery via data columns. formore information.Applicable only to format=’table’.
- errorsstr, default ‘strict’
Specifies how encoding and decoding errors are to be handled.See the errors argument for
open()
for a full listof options.- encodingstr, default “UTF-8”
See also
read_hdf
Read from HDF file.
DataFrame.to_orc
Write a DataFrame to the binary orc format.
DataFrame.to_parquet
Write a DataFrame to the binary parquet format.
DataFrame.to_sql
Write to a SQL table.
DataFrame.to_feather
Write out feather-format for DataFrames.
DataFrame.to_csv
Write out to a csv file.
Examples
>>>df=pd.DataFrame({'A':[1,2,3],'B':[4,5,6]},...index=['a','b','c'])>>>df.to_hdf('data.h5',key='df',mode='w')
We can add another object to the same file:
>>>s=pd.Series([1,2,3,4])>>>s.to_hdf('data.h5',key='s')
Reading from HDF file:
>>>pd.read_hdf('data.h5','df')A Ba 1 4b 2 5c 3 6>>>pd.read_hdf('data.h5','s')0 11 22 33 4dtype: int64