- API reference
- DataFrame
- pandas.DataF...
pandas.DataFrame.to_dict#
- DataFrame.to_dict(orient='dict',*,into=<class'dict'>,index=True)[source]#
Convert the DataFrame to a dictionary.
The type of the key-value pairs can be customized with the parameters(see below).
- Parameters:
- orientstr {‘dict’, ‘list’, ‘series’, ‘split’, ‘tight’, ‘records’, ‘index’}
Determines the type of the values of the dictionary.
‘dict’ (default) : dict like {column -> {index -> value}}
‘list’ : dict like {column -> [values]}
‘series’ : dict like {column -> Series(values)}
‘split’ : dict like{‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values]}
‘tight’ : dict like{‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values],‘index_names’ -> [index.names], ‘column_names’ -> [column.names]}
‘records’ : list like[{column -> value}, … , {column -> value}]
‘index’ : dict like {index -> {column -> value}}
Added in version 1.4.0:‘tight’ as an allowed value for the
orient
argument- intoclass, default dict
The collections.abc.MutableMapping subclass used for all Mappingsin the return value. Can be the actual class or an emptyinstance of the mapping type you want. If you want acollections.defaultdict, you must pass it initialized.
- indexbool, default True
Whether to include the index item (and index_names item iforientis ‘tight’) in the returned dictionary. Can only be
False
whenorient is ‘split’ or ‘tight’.Added in version 2.0.0.
- Returns:
- dict, list or collections.abc.MutableMapping
Return a collections.abc.MutableMapping object representing theDataFrame. The resulting transformation depends on theorientparameter.
See also
DataFrame.from_dict
Create a DataFrame from a dictionary.
DataFrame.to_json
Convert a DataFrame to JSON format.
Examples
>>>df=pd.DataFrame({'col1':[1,2],...'col2':[0.5,0.75]},...index=['row1','row2'])>>>df col1 col2row1 1 0.50row2 2 0.75>>>df.to_dict(){'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}}
You can specify the return orientation.
>>>df.to_dict('series'){'col1': row1 1 row2 2Name: col1, dtype: int64,'col2': row1 0.50 row2 0.75Name: col2, dtype: float64}
>>>df.to_dict('split'){'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]]}
>>>df.to_dict('records')[{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}]
>>>df.to_dict('index'){'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}}
>>>df.to_dict('tight'){'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]], 'index_names': [None], 'column_names': [None]}
You can also specify the mapping type.
>>>fromcollectionsimportOrderedDict,defaultdict>>>df.to_dict(into=OrderedDict)OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))])
If you want adefaultdict, you need to initialize it:
>>>dd=defaultdict(list)>>>df.to_dict('records',into=dd)[defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}), defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})]