- API reference
- DataFrame
- pandas.DataFrame.sem
pandas.DataFrame.sem#
- DataFrame.sem(axis=0,skipna=True,ddof=1,numeric_only=False,**kwargs)[source]#
Return unbiased standard error of the mean over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument
- Parameters:
- axis{index (0), columns (1)}
ForSeries this parameter is unused and defaults to 0.
Warning
The behavior of DataFrame.sem with
axis=None
is deprecated,in a future version this will reduce over both axes and return a scalarTo retain the old behavior, pass axis=0 (or do not pass axis).- skipnabool, default True
Exclude NA/null values. If an entire row/column is NA, the resultwill be NA.
- ddofint, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof,where N represents the number of elements.
- numeric_onlybool, default False
Include only float, int, boolean columns. Not implemented for Series.
- Returns:
- Series or DataFrame (if level specified)
Examples
>>>s=pd.Series([1,2,3])>>>s.sem().round(6)0.57735
With a DataFrame
>>>df=pd.DataFrame({'a':[1,2],'b':[2,3]},index=['tiger','zebra'])>>>df a btiger 1 2zebra 2 3>>>df.sem()a 0.5b 0.5dtype: float64
Using axis=1
>>>df.sem(axis=1)tiger 0.5zebra 0.5dtype: float64
In this case,numeric_only should be set toTrueto avoid getting an error.
>>>df=pd.DataFrame({'a':[1,2],'b':['T','Z']},...index=['tiger','zebra'])>>>df.sem(numeric_only=True)a 0.5dtype: float64