- API reference
- DataFrame
- pandas.DataF...
pandas.DataFrame.rolling#
- DataFrame.rolling(window,min_periods=None,center=False,win_type=None,on=None,axis=<no_default>,closed=None,step=None,method='single')[source]#
Provide rolling window calculations.
- Parameters:
- windowint, timedelta, str, offset, or BaseIndexer subclass
Size of the moving window.
If an integer, the fixed number of observations used foreach window.
If a timedelta, str, or offset, the time period of each window. Eachwindow will be a variable sized based on the observations included inthe time-period. This is only valid for datetimelike indexes.To learn more about the offsets & frequency strings, please seethis link.
If a BaseIndexer subclass, the window boundariesbased on the defined
get_window_bounds
method. Additional rollingkeyword arguments, namelymin_periods
,center
,closed
andstep
will be passed toget_window_bounds
.- min_periodsint, default None
Minimum number of observations in window required to have a value;otherwise, result is
np.nan
.For a window that is specified by an offset,
min_periods
will default to 1.For a window that is specified by an integer,
min_periods
will defaultto the size of the window.- centerbool, default False
If False, set the window labels as the right edge of the window index.
If True, set the window labels as the center of the window index.
- win_typestr, default None
If
None
, all points are evenly weighted.If a string, it must be a validscipy.signal window function.
Certain Scipy window types require additional parameters to be passedin the aggregation function. The additional parameters must matchthe keywords specified in the Scipy window type method signature.
- onstr, optional
For a DataFrame, a column label or Index level on whichto calculate the rolling window, rather than the DataFrame’s index.
Provided integer column is ignored and excluded from result sincean integer index is not used to calculate the rolling window.
- axisint or str, default 0
If
0
or'index'
, roll across the rows.If
1
or'columns'
, roll across the columns.ForSeries this parameter is unused and defaults to 0.
Deprecated since version 2.1.0:The axis keyword is deprecated. For
axis=1
,transpose the DataFrame first instead.- closedstr, default None
If
'right'
, the first point in the window is excluded from calculations.If
'left'
, the last point in the window is excluded from calculations.If
'both'
, the no points in the window are excluded from calculations.If
'neither'
, the first and last points in the window are excludedfrom calculations.Default
None
('right'
).- stepint, default None
Added in version 1.5.0.
Evaluate the window at every
step
result, equivalent to slicing as[::step]
.window
must be an integer. Using a step argument otherthan None or 1 will produce a result with a different shape than the input.- methodstr {‘single’, ‘table’}, default ‘single’
Added in version 1.3.0.
Execute the rolling operation per single column or row (
'single'
)or over the entire object ('table'
).This argument is only implemented when specifying
engine='numba'
in the method call.
- Returns:
- pandas.api.typing.Window or pandas.api.typing.Rolling
An instance of Window is returned if
win_type
is passed. Otherwise,an instance of Rolling is returned.
Notes
SeeWindowing Operations for further usage detailsand examples.
Examples
>>>df=pd.DataFrame({'B':[0,1,2,np.nan,4]})>>>df B0 0.01 1.02 2.03 NaN4 4.0
window
Rolling sum with a window length of 2 observations.
>>>df.rolling(2).sum() B0 NaN1 1.02 3.03 NaN4 NaN
Rolling sum with a window span of 2 seconds.
>>>df_time=pd.DataFrame({'B':[0,1,2,np.nan,4]},...index=[pd.Timestamp('20130101 09:00:00'),...pd.Timestamp('20130101 09:00:02'),...pd.Timestamp('20130101 09:00:03'),...pd.Timestamp('20130101 09:00:05'),...pd.Timestamp('20130101 09:00:06')])
>>>df_time B2013-01-01 09:00:00 0.02013-01-01 09:00:02 1.02013-01-01 09:00:03 2.02013-01-01 09:00:05 NaN2013-01-01 09:00:06 4.0
>>>df_time.rolling('2s').sum() B2013-01-01 09:00:00 0.02013-01-01 09:00:02 1.02013-01-01 09:00:03 3.02013-01-01 09:00:05 NaN2013-01-01 09:00:06 4.0
Rolling sum with forward looking windows with 2 observations.
>>>indexer=pd.api.indexers.FixedForwardWindowIndexer(window_size=2)>>>df.rolling(window=indexer,min_periods=1).sum() B0 1.01 3.02 2.03 4.04 4.0
min_periods
Rolling sum with a window length of 2 observations, but only needs a minimum of 1observation to calculate a value.
>>>df.rolling(2,min_periods=1).sum() B0 0.01 1.02 3.03 2.04 4.0
center
Rolling sum with the result assigned to the center of the window index.
>>>df.rolling(3,min_periods=1,center=True).sum() B0 1.01 3.02 3.03 6.04 4.0
>>>df.rolling(3,min_periods=1,center=False).sum() B0 0.01 1.02 3.03 3.04 6.0
step
Rolling sum with a window length of 2 observations, minimum of 1 observation tocalculate a value, and a step of 2.
>>>df.rolling(2,min_periods=1,step=2).sum() B0 0.02 3.04 4.0
win_type
Rolling sum with a window length of 2, using the Scipy
'gaussian'
window type.std
is required in the aggregation function.>>>df.rolling(2,win_type='gaussian').sum(std=3) B0 NaN1 0.9862072 2.9586213 NaN4 NaN
on
Rolling sum with a window length of 2 days.
>>>df=pd.DataFrame({...'A':[pd.to_datetime('2020-01-01'),...pd.to_datetime('2020-01-01'),...pd.to_datetime('2020-01-02'),],...'B':[1,2,3],},...index=pd.date_range('2020',periods=3))
>>>df A B2020-01-01 2020-01-01 12020-01-02 2020-01-01 22020-01-03 2020-01-02 3
>>>df.rolling('2D',on='A').sum() A B2020-01-01 2020-01-01 1.02020-01-02 2020-01-01 3.02020-01-03 2020-01-02 6.0