Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Ctrl+K

pandas.DataFrame.prod#

DataFrame.prod(axis=0,skipna=True,numeric_only=False,min_count=0,**kwargs)[source]#

Return the product of the values over the requested axis.

Parameters:
axis{index (0), columns (1)}

Axis for the function to be applied on.ForSeries this parameter is unused and defaults to 0.

Warning

The behavior of DataFrame.prod withaxis=None is deprecated,in a future version this will reduce over both axes and return a scalarTo retain the old behavior, pass axis=0 (or do not pass axis).

Added in version 2.0.0.

skipnabool, default True

Exclude NA/null values when computing the result.

numeric_onlybool, default False

Include only float, int, boolean columns. Not implemented for Series.

min_countint, default 0

The required number of valid values to perform the operation. If fewer thanmin_count non-NA values are present the result will be NA.

**kwargs

Additional keyword arguments to be passed to the function.

Returns:
Series or scalar

See also

Series.sum

Return the sum.

Series.min

Return the minimum.

Series.max

Return the maximum.

Series.idxmin

Return the index of the minimum.

Series.idxmax

Return the index of the maximum.

DataFrame.sum

Return the sum over the requested axis.

DataFrame.min

Return the minimum over the requested axis.

DataFrame.max

Return the maximum over the requested axis.

DataFrame.idxmin

Return the index of the minimum over the requested axis.

DataFrame.idxmax

Return the index of the maximum over the requested axis.

Examples

By default, the product of an empty or all-NA Series is1

>>>pd.Series([],dtype="float64").prod()1.0

This can be controlled with themin_count parameter

>>>pd.Series([],dtype="float64").prod(min_count=1)nan

Thanks to theskipna parameter,min_count handles all-NA andempty series identically.

>>>pd.Series([np.nan]).prod()1.0
>>>pd.Series([np.nan]).prod(min_count=1)nan

[8]ページ先頭

©2009-2025 Movatter.jp