- API reference
- DataFrame
- pandas.DataF...
pandas.DataFrame.mean#
- DataFrame.mean(axis=0,skipna=True,numeric_only=False,**kwargs)[source]#
Return the mean of the values over the requested axis.
- Parameters:
- axis{index (0), columns (1)}
Axis for the function to be applied on.ForSeries this parameter is unused and defaults to 0.
For DataFrames, specifying
axis=None
will apply the aggregationacross both axes.Added in version 2.0.0.
- skipnabool, default True
Exclude NA/null values when computing the result.
- numeric_onlybool, default False
Include only float, int, boolean columns. Not implemented for Series.
- **kwargs
Additional keyword arguments to be passed to the function.
- Returns:
- Series or scalar
Examples
>>>s=pd.Series([1,2,3])>>>s.mean()2.0
With a DataFrame
>>>df=pd.DataFrame({'a':[1,2],'b':[2,3]},index=['tiger','zebra'])>>>df a btiger 1 2zebra 2 3>>>df.mean()a 1.5b 2.5dtype: float64
Using axis=1
>>>df.mean(axis=1)tiger 1.5zebra 2.5dtype: float64
In this case,numeric_only should be set toTrue to avoidgetting an error.
>>>df=pd.DataFrame({'a':[1,2],'b':['T','Z']},...index=['tiger','zebra'])>>>df.mean(numeric_only=True)a 1.5dtype: float64
On this page