- API reference
- DataFrame
- pandas.DataF...
pandas.DataFrame.isin#
- DataFrame.isin(values)[source]#
Whether each element in the DataFrame is contained in values.
- Parameters:
- valuesiterable, Series, DataFrame or dict
The result will only be true at a location if all thelabels match. Ifvalues is a Series, that’s the index. Ifvalues is a dict, the keys must be the column names,which must match. Ifvalues is a DataFrame,then both the index and column labels must match.
- Returns:
- DataFrame
DataFrame of booleans showing whether each element in the DataFrameis contained in values.
See also
DataFrame.eq
Equality test for DataFrame.
Series.isin
Equivalent method on Series.
Series.str.contains
Test if pattern or regex is contained within a string of a Series or Index.
Examples
>>>df=pd.DataFrame({'num_legs':[2,4],'num_wings':[2,0]},...index=['falcon','dog'])>>>df num_legs num_wingsfalcon 2 2dog 4 0
When
values
is a list check whether every value in the DataFrameis present in the list (which animals have 0 or 2 legs or wings)>>>df.isin([0,2]) num_legs num_wingsfalcon True Truedog False True
To check if
values
isnot in the DataFrame, use the~
operator:>>>~df.isin([0,2]) num_legs num_wingsfalcon False Falsedog True False
When
values
is a dict, we can pass values to check for eachcolumn separately:>>>df.isin({'num_wings':[0,3]}) num_legs num_wingsfalcon False Falsedog False True
When
values
is a Series or DataFrame the index and column mustmatch. Note that ‘falcon’ does not match based on the number of legsin other.>>>other=pd.DataFrame({'num_legs':[8,3],'num_wings':[0,2]},...index=['spider','falcon'])>>>df.isin(other) num_legs num_wingsfalcon False Truedog False False