- API reference
- DataFrame
- pandas.DataF...
pandas.DataFrame.idxmax#
- DataFrame.idxmax(axis=0,skipna=True,numeric_only=False)[source]#
Return index of first occurrence of maximum over requested axis.
NA/null values are excluded.
- Parameters:
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The axis to use. 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise.
- skipnabool, default True
Exclude NA/null values. If an entire row/column is NA, the resultwill be NA.
- numeric_onlybool, default False
Include onlyfloat,int orboolean data.
Added in version 1.5.0.
- Returns:
- Series
Indexes of maxima along the specified axis.
- Raises:
- ValueError
If the row/column is empty
See also
Series.idxmax
Return index of the maximum element.
Notes
This method is the DataFrame version of
ndarray.argmax
.Examples
Consider a dataset containing food consumption in Argentina.
>>>df=pd.DataFrame({'consumption':[10.51,103.11,55.48],...'co2_emissions':[37.2,19.66,1712]},...index=['Pork','Wheat Products','Beef'])
>>>df consumption co2_emissionsPork 10.51 37.20Wheat Products 103.11 19.66Beef 55.48 1712.00
By default, it returns the index for the maximum value in each column.
>>>df.idxmax()consumption Wheat Productsco2_emissions Beefdtype: object
To return the index for the maximum value in each row, use
axis="columns"
.>>>df.idxmax(axis="columns")Pork co2_emissionsWheat Products consumptionBeef co2_emissionsdtype: object
On this page