- API reference
- DataFrame
- pandas.DataF...
pandas.DataFrame.ffill#
- DataFrame.ffill(*,axis=None,inplace=False,limit=None,limit_area=None,downcast=<no_default>)[source]#
Fill NA/NaN values by propagating the last valid observation to next valid.
- Parameters:
- axis{0 or ‘index’} for Series, {0 or ‘index’, 1 or ‘columns’} for DataFrame
Axis along which to fill missing values. ForSeriesthis parameter is unused and defaults to 0.
- inplacebool, default False
If True, fill in-place. Note: this will modify anyother views on this object (e.g., a no-copy slice for a column in aDataFrame).
- limitint, default None
If method is specified, this is the maximum number of consecutiveNaN values to forward/backward fill. In other words, if there isa gap with more than this number of consecutive NaNs, it will onlybe partially filled. If method is not specified, this is themaximum number of entries along the entire axis where NaNs will befilled. Must be greater than 0 if not None.
- limit_area{None, ‘inside’, ‘outside’}, default None
If limit is specified, consecutive NaNs will be filled with thisrestriction.
None
: No fill restriction.‘inside’: Only fill NaNs surrounded by valid values(interpolate).
‘outside’: Only fill NaNs outside valid values (extrapolate).
Added in version 2.2.0.
- downcastdict, default is None
A dict of item->dtype of what to downcast if possible,or the string ‘infer’ which will try to downcast to an appropriateequal type (e.g. float64 to int64 if possible).
Deprecated since version 2.2.0.
- Returns:
- Series/DataFrame or None
Object with missing values filled or None if
inplace=True
.
Examples
>>>df=pd.DataFrame([[np.nan,2,np.nan,0],...[3,4,np.nan,1],...[np.nan,np.nan,np.nan,np.nan],...[np.nan,3,np.nan,4]],...columns=list("ABCD"))>>>df A B C D0 NaN 2.0 NaN 0.01 3.0 4.0 NaN 1.02 NaN NaN NaN NaN3 NaN 3.0 NaN 4.0
>>>df.ffill() A B C D0 NaN 2.0 NaN 0.01 3.0 4.0 NaN 1.02 3.0 4.0 NaN 1.03 3.0 3.0 NaN 4.0
>>>ser=pd.Series([1,np.nan,2,3])>>>ser.ffill()0 1.01 1.02 2.03 3.0dtype: float64