- API reference
- DataFrame
- pandas.DataF...
pandas.DataFrame.diff#
- DataFrame.diff(periods=1,axis=0)[source]#
First discrete difference of element.
Calculates the difference of a DataFrame element compared with anotherelement in the DataFrame (default is element in previous row).
- Parameters:
- periodsint, default 1
Periods to shift for calculating difference, accepts negativevalues.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
Take difference over rows (0) or columns (1).
- Returns:
- DataFrame
First differences of the Series.
See also
DataFrame.pct_change
Percent change over given number of periods.
DataFrame.shift
Shift index by desired number of periods with an optional time freq.
Series.diff
First discrete difference of object.
Notes
For boolean dtypes, this uses
operator.xor()
rather thanoperator.sub()
.The result is calculated according to current dtype in DataFrame,however dtype of the result is always float64.Examples
Difference with previous row
>>>df=pd.DataFrame({'a':[1,2,3,4,5,6],...'b':[1,1,2,3,5,8],...'c':[1,4,9,16,25,36]})>>>df a b c0 1 1 11 2 1 42 3 2 93 4 3 164 5 5 255 6 8 36
>>>df.diff() a b c0 NaN NaN NaN1 1.0 0.0 3.02 1.0 1.0 5.03 1.0 1.0 7.04 1.0 2.0 9.05 1.0 3.0 11.0
Difference with previous column
>>>df.diff(axis=1) a b c0 NaN 0 01 NaN -1 32 NaN -1 73 NaN -1 134 NaN 0 205 NaN 2 28
Difference with 3rd previous row
>>>df.diff(periods=3) a b c0 NaN NaN NaN1 NaN NaN NaN2 NaN NaN NaN3 3.0 2.0 15.04 3.0 4.0 21.05 3.0 6.0 27.0
Difference with following row
>>>df.diff(periods=-1) a b c0 -1.0 0.0 -3.01 -1.0 -1.0 -5.02 -1.0 -1.0 -7.03 -1.0 -2.0 -9.04 -1.0 -3.0 -11.05 NaN NaN NaN
Overflow in input dtype
>>>df=pd.DataFrame({'a':[1,0]},dtype=np.uint8)>>>df.diff() a0 NaN1 255.0