- API reference
- DataFrame
- pandas.DataF...
pandas.DataFrame.cumsum#
- DataFrame.cumsum(axis=None,skipna=True,*args,**kwargs)[source]#
Return cumulative sum over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulativesum.
- Parameters:
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The index or the name of the axis. 0 is equivalent to None or ‘index’.ForSeries this parameter is unused and defaults to 0.
- skipnabool, default True
Exclude NA/null values. If an entire row/column is NA, the resultwill be NA.
- *args, **kwargs
Additional keywords have no effect but might be accepted forcompatibility with NumPy.
- Returns:
- Series or DataFrame
Return cumulative sum of Series or DataFrame.
See also
core.window.expanding.Expanding.sumSimilar functionality but ignores
NaNvalues.DataFrame.sumReturn the sum over DataFrame axis.
DataFrame.cummaxReturn cumulative maximum over DataFrame axis.
DataFrame.cumminReturn cumulative minimum over DataFrame axis.
DataFrame.cumsumReturn cumulative sum over DataFrame axis.
DataFrame.cumprodReturn cumulative product over DataFrame axis.
Examples
Series
>>>s=pd.Series([2,np.nan,5,-1,0])>>>s0 2.01 NaN2 5.03 -1.04 0.0dtype: float64
By default, NA values are ignored.
>>>s.cumsum()0 2.01 NaN2 7.03 6.04 6.0dtype: float64
To include NA values in the operation, use
skipna=False>>>s.cumsum(skipna=False)0 2.01 NaN2 NaN3 NaN4 NaNdtype: float64
DataFrame
>>>df=pd.DataFrame([[2.0,1.0],...[3.0,np.nan],...[1.0,0.0]],...columns=list('AB'))>>>df A B0 2.0 1.01 3.0 NaN2 1.0 0.0
By default, iterates over rows and finds the sumin each column. This is equivalent to
axis=Noneoraxis='index'.>>>df.cumsum() A B0 2.0 1.01 5.0 NaN2 6.0 1.0
To iterate over columns and find the sum in each row,use
axis=1>>>df.cumsum(axis=1) A B0 2.0 3.01 3.0 NaN2 1.0 1.0