- API reference
- Window
- pandas.core....
pandas.core.window.rolling.Rolling.cov#
- Rolling.cov(other=None,pairwise=None,ddof=1,numeric_only=False)[source]#
Calculate the rolling sample covariance.
- Parameters:
- otherSeries or DataFrame, optional
If not supplied then will default to self and produce pairwiseoutput.
- pairwisebool, default None
If False then only matching columns between self and other will beused and the output will be a DataFrame.If True then all pairwise combinations will be calculated and theoutput will be a MultiIndexed DataFrame in the case of DataFrameinputs. In the case of missing elements, only complete pairwiseobservations will be used.
- ddofint, default 1
Delta Degrees of Freedom. The divisor used in calculationsis
N-ddof, whereNrepresents the number of elements.- numeric_onlybool, default False
Include only float, int, boolean columns.
Added in version 1.5.0.
- Returns:
- Series or DataFrame
Return type is the same as the original object with
np.float64dtype.
See also
pandas.Series.rollingCalling rolling with Series data.
pandas.DataFrame.rollingCalling rolling with DataFrames.
pandas.Series.covAggregating cov for Series.
pandas.DataFrame.covAggregating cov for DataFrame.
Examples
>>>ser1=pd.Series([1,2,3,4])>>>ser2=pd.Series([1,4,5,8])>>>ser1.rolling(2).cov(ser2)0 NaN1 1.52 0.53 1.5dtype: float64