- API reference
- Resampling
- pandas.core....
pandas.core.resample.Resampler.first#
- finalResampler.first(numeric_only=False,min_count=0,skipna=True,*args,**kwargs)[source]#
Compute the first entry of each column within each group.
Defaults to skipping NA elements.
- Parameters:
- numeric_onlybool, default False
Include only float, int, boolean columns.
- min_countint, default -1
The required number of valid values to perform the operation. If fewerthan
min_countvalid values are present the result will be NA.- skipnabool, default True
Exclude NA/null values. If an entire row/column is NA, the resultwill be NA.
Added in version 2.2.1.
- Returns:
- Series or DataFrame
First values within each group.
See also
DataFrame.groupbyApply a function groupby to each row or column of a DataFrame.
pandas.core.groupby.DataFrameGroupBy.lastCompute the last non-null entry of each column.
pandas.core.groupby.DataFrameGroupBy.nthTake the nth row from each group.
Examples
>>>df=pd.DataFrame(dict(A=[1,1,3],B=[None,5,6],C=[1,2,3],...D=['3/11/2000','3/12/2000','3/13/2000']))>>>df['D']=pd.to_datetime(df['D'])>>>df.groupby("A").first() B C DA1 5.0 1 2000-03-113 6.0 3 2000-03-13>>>df.groupby("A").first(min_count=2) B C DA1 NaN 1.0 2000-03-113 NaN NaN NaT>>>df.groupby("A").first(numeric_only=True) B CA1 5.0 13 6.0 3
On this page