- API reference
- Resampling
- pandas.core....
pandas.core.resample.Resampler.count#
- finalResampler.count()[source]#
Compute count of group, excluding missing values.
- Returns:
- Series or DataFrame
Count of values within each group.
See also
Series.groupbyApply a function groupby to a Series.
DataFrame.groupbyApply a function groupby to each row or column of a DataFrame.
Examples
For SeriesGroupBy:
>>>lst=['a','a','b']>>>ser=pd.Series([1,2,np.nan],index=lst)>>>sera 1.0a 2.0b NaNdtype: float64>>>ser.groupby(level=0).count()a 2b 0dtype: int64
For DataFrameGroupBy:
>>>data=[[1,np.nan,3],[1,np.nan,6],[7,8,9]]>>>df=pd.DataFrame(data,columns=["a","b","c"],...index=["cow","horse","bull"])>>>df a b ccow 1 NaN 3horse 1 NaN 6bull 7 8.0 9>>>df.groupby("a").count() b ca1 0 27 1 1
For Resampler:
>>>ser=pd.Series([1,2,3,4],index=pd.DatetimeIndex(...['2023-01-01','2023-01-15','2023-02-01','2023-02-15']))>>>ser2023-01-01 12023-01-15 22023-02-01 32023-02-15 4dtype: int64>>>ser.resample('MS').count()2023-01-01 22023-02-01 2Freq: MS, dtype: int64
On this page