pandas.DataFrame.bfill#

DataFrame.bfill(*,axis=None,inplace=False,limit=None,limit_area=None)[source]#

Fill NA/NaN values by using the next valid observation to fill the gap.

This method fills missing values in a backward direction along thespecified axis, propagating non-null values from later positions toearlier positions containing NaN.

Parameters:
axis{0 or ‘index’} for Series, {0 or ‘index’, 1 or ‘columns’} for DataFrame

Axis along which to fill missing values. ForSeriesthis parameter is unused and defaults to 0.

inplacebool, default False

If True, fill in-place. Note: this will modify anyother views on this object (e.g., a no-copy slice for a column in aDataFrame).

limitint, default None

If method is specified, this is the maximum number of consecutiveNaN values to forward/backward fill. In other words, if there isa gap with more than this number of consecutive NaNs, it will onlybe partially filled. If method is not specified, this is themaximum number of entries along the entire axis where NaNs will befilled. Must be greater than 0 if not None.

limit_area{{None, ‘inside’, ‘outside’}}, default None

If limit is specified, consecutive NaNs will be filled with thisrestriction.

  • None: No fill restriction.

  • ‘inside’: Only fill NaNs surrounded by valid values(interpolate).

  • ‘outside’: Only fill NaNs outside valid values (extrapolate).

Added in version 2.2.0.

Returns:
Series/DataFrame

Object with missing values filled.

See also

DataFrame.ffill

Fill NA/NaN values by propagating the last valid observation to next valid.

Examples

For Series:

>>>s=pd.Series([1,None,None,2])>>>s.bfill()0    1.01    2.02    2.03    2.0dtype: float64>>>s.bfill(limit=1)0    1.01    NaN2    2.03    2.0dtype: float64

With DataFrame:

>>>df=pd.DataFrame({"A":[1,None,None,4],"B":[None,5,None,7]})>>>df      A     B0   1.0   NaN1   NaN   5.02   NaN   NaN3   4.0   7.0>>>df.bfill()      A     B0   1.0   5.01   4.0   5.02   4.0   7.03   4.0   7.0>>>df.bfill(limit=1)      A     B0   1.0   5.01   NaN   5.02   4.0   7.03   4.0   7.0
On this page