- Getting started
- Getting started tutorials
- How do I...
How do I create plots in pandas?#
In [1]:importpandasaspdIn [2]:importmatplotlib.pyplotasplt
- Air quality data
For this tutorial, air quality data about\(NO_2\) is used, madeavailable byOpenAQ and using thepy-openaq package.The
To raw dataair_quality_no2.csvdata set provides\(NO_2\) values forthe measurement stationsFR04014,BETR801 andLondon Westminsterin respectively Paris, Antwerp and London.In [3]:air_quality=pd.read_csv("data/air_quality_no2.csv",index_col=0,parse_dates=True)In [4]:air_quality.head()Out[4]: station_antwerp station_paris station_londondatetime2019-05-07 02:00:00 NaN NaN 23.02019-05-07 03:00:00 50.5 25.0 19.02019-05-07 04:00:00 45.0 27.7 19.02019-05-07 05:00:00 NaN 50.4 16.02019-05-07 06:00:00 NaN 61.9 NaN
Note
The usage of the
index_colandparse_datesparameters of theread_csvfunction to define the first (0th) column asindex of the resultingDataFrameand convert the dates in the column toTimestampobjects, respectively.
I want a quick visual check of the data.
In [5]:air_quality.plot()Out[5]:<Axes: xlabel='datetime'>In [6]:plt.show()

With a
DataFrame, pandas creates by default one line plot for each ofthe columns with numeric data.
I want to plot only the columns of the data table with the data from Paris.
In [7]:air_quality["station_paris"].plot()Out[7]:<Axes: xlabel='datetime'>In [8]:plt.show()

To plot a specific column, use the selection method of thesubset data tutorial in combination with the
plot()method. Hence, theplot()method works on bothSeriesandDataFrame.
I want to visually compare the\(NO_2\) values measured in London versus Paris.
In [9]:air_quality.plot.scatter(x="station_london",y="station_paris",alpha=0.5)Out[9]:<Axes: xlabel='station_london', ylabel='station_paris'>In [10]:plt.show()

Apart from the defaultline plot when using theplot function, anumber of alternatives are available to plot data. Let’s use somestandard Python to get an overview of the available plot methods:
In [11]:[ ....:method_name ....:formethod_nameindir(air_quality.plot) ....:ifnotmethod_name.startswith("_") ....:] ....:Out[11]:['area', 'bar', 'barh', 'box', 'density', 'hexbin', 'hist', 'kde', 'line', 'pie', 'scatter']
Note
In many development environments as well as IPython andJupyter Notebook, use the TAB button to get an overview of the availablemethods, for exampleair_quality.plot. + TAB.
One of the options isDataFrame.plot.box(), which refers to aboxplot. Theboxmethod is applicable on the air quality example data:
In [12]:air_quality.plot.box()Out[12]:<Axes: >In [13]:plt.show()

For an introduction to plots other than the default line plot, see the user guide section aboutsupported plot styles.
I want each of the columns in a separate subplot.
In [14]:axs=air_quality.plot.area(figsize=(12,4),subplots=True)In [15]:plt.show()

Separate subplots for each of the data columns are supported by the
subplotsargumentof theplotfunctions. The builtin options available in each of the pandas plotfunctions are worth reviewing.
Some more formatting options are explained in the user guide section onplot formatting.
I want to further customize, extend or save the resulting plot.
In [16]:fig,axs=plt.subplots(figsize=(12,4))In [17]:air_quality.plot.area(ax=axs)Out[17]:<Axes: xlabel='datetime'>In [18]:axs.set_ylabel("NO$_2$ concentration")Out[18]:Text(0, 0.5, 'NO$_2$ concentration')In [19]:fig.savefig("no2_concentrations.png")In [20]:plt.show()

Each of the plot objects created by pandas is aMatplotlib object. As Matplotlib providesplenty of options to customize plots, making the link between pandas andMatplotlib explicit enables all the power of Matplotlib to the plot.This strategy is applied in the previous example:
fig,axs=plt.subplots(figsize=(12,4))# Create an empty Matplotlib Figure and Axesair_quality.plot.area(ax=axs)# Use pandas to put the area plot on the prepared Figure/Axesaxs.set_ylabel("NO$_2$ concentration")# Do any Matplotlib customization you likefig.savefig("no2_concentrations.png")# Save the Figure/Axes using the existing Matplotlib method.plt.show()# Display the plot
REMEMBER
The
.plot.*methods are applicable on both Series and DataFrames.By default, each of the columns is plotted as a different element(line, boxplot,…).
Any plot created by pandas is a Matplotlib object.
A full overview of plotting in pandas is provided in thevisualization pages.