Movatterモバイル変換


[0]ホーム

URL:


Skip to contents

Package index

All functions

ANOVA()get_tau_ANOVA()
Analysis of Variance
AverageN2()evaluate(<AverageN2>,<TwoStageDesign>)
Regularization via L1 norm
Binomial()quantile(<Binomial>)simulate(<Binomial>,<numeric>)
Binomial data distribution
ChiSquared()quantile(<ChiSquared>)simulate(<ChiSquared>,<numeric>)
Chi-Squared data distribution
ConditionalPower()Power()evaluate(<ConditionalPower>,<TwoStageDesign>)
(Conditional) Power of a Design
ConditionalSampleSize()ExpectedSampleSize()ExpectedNumberOfEvents()evaluate(<ConditionalSampleSize>,<TwoStageDesign>)
(Conditional) Sample Size of a Design
evaluate(<Constraint>,<TwoStageDesign>)`<=`(<ConditionalScore>,<numeric>)`>=`(<ConditionalScore>,<numeric>)`<=`(<numeric>,<ConditionalScore>)`>=`(<numeric>,<ConditionalScore>)`<=`(<ConditionalScore>,<ConditionalScore>)`>=`(<ConditionalScore>,<ConditionalScore>)`<=`(<UnconditionalScore>,<numeric>)`>=`(<UnconditionalScore>,<numeric>)`<=`(<numeric>,<UnconditionalScore>)`>=`(<numeric>,<UnconditionalScore>)`<=`(<UnconditionalScore>,<UnconditionalScore>)`>=`(<UnconditionalScore>,<UnconditionalScore>)
Formulating Constraints
ContinuousPrior()
Continuous univariate prior distributions
DataDistribution-classDataDistribution
Data distributions
GroupSequentialDesign()TwoStageDesign(<GroupSequentialDesign>)TwoStageDesign(<GroupSequentialDesignSurvival>)
Group-sequential two-stage designs
GroupSequentialDesignSurvival-class
Group-sequential two-stage designs for time-to-event-endpoints
MaximumSampleSize()evaluate(<MaximumSampleSize>,<TwoStageDesign>)
Maximum Sample Size of a Design
N1()evaluate(<N1>,<TwoStageDesign>)
Regularize n1
NestedModels()quantile(<NestedModels>)simulate(<NestedModels>,<numeric>)
F-Distribution
Normal()quantile(<Normal>)simulate(<Normal>,<numeric>)
Normal data distribution
OneStageDesign()TwoStageDesign(<OneStageDesign>)TwoStageDesign(<OneStageDesignSurvival>)plot(<OneStageDesign>)
One-stage designs
OneStageDesignSurvival-class
One-stage designs for time-to-event endpoints
Pearson2xK()get_tau_Pearson2xK()
Pearson's chi-squared test for contingency tables
PointMassPrior()
Univariate discrete point mass priors
Prior-classPrior
Univariate prior on model parameter
expected()evaluate()
Scores
Student()quantile(<Student>)simulate(<Student>,<numeric>)
Student's t data distribution
Survival()quantile(<Survival>)simulate(<Survival>,<numeric>)
Log-rank test
SurvivalDesign()TwoStageDesign(<TwoStageDesign>)OneStageDesign(<OneStageDesign>)GroupSequentialDesign(<GroupSequentialDesign>)
SurvivalDesign
TwoStageDesign()summary(<TwoStageDesign>)
Two-stage designs
TwoStageDesignSurvival-class
Two-stage design for time-to-event-endpoints
ZSquared()get_tau_ZSquared()
Distribution class of a squared normal distribution
adoptr-packageadoptr
Adaptive Optimal Two-Stage Designs
get_lower_boundary_design()get_upper_boundary_design()
Boundary designs
bounds()
Get support of a prior or data distribution
composite()evaluate(<CompositeScore>,<TwoStageDesign>)
Score Composition
condition()
Condition a prior on an interval
c2()
Query critical values of a design
cumulative_distribution_function()
Cumulative distribution function
expectation()
Expected value of a function
get_initial_design()
Initial design
make_tunable()make_fixed()
Fix parameters during optimization
minimize()
Find optimal two-stage design by constraint minimization
n1()n2()n()
Query sample size of a design
plot(<TwoStageDesign>)
PlotTwoStageDesign with optional set of conditional scores
posterior()
Compute posterior distribution
predictive_cdf()
Predictive CDF
predictive_pdf()
Predictive PDF
print()
Printing an optimization result
probability_density_function()
Probability density function
simulate(<TwoStageDesign>,<numeric>)
Draw samples from a two-stage design
subject_to()evaluate(<ConstraintsCollection>,<TwoStageDesign>)
Create a collection of constraints
tunable_parameters()update(<TwoStageDesign>)update(<OneStageDesign>)
Switch between numeric and S4 class representation of a design

[8]ページ先頭

©2009-2025 Movatter.jp