Movatterモバイル変換


[0]ホーム

URL:


login
Search:keyword:new
         
Semiperfect primes: p is a semiperfect prime <=> p is prime and p + 1 is semiperfect.
+0
0
5, 11, 17, 19, 23, 29, 41, 47, 53, 59, 71, 79, 83, 89, 101, 103, 107, 113, 131, 137, 139, 149, 167, 173, 179, 191, 197, 199, 223, 227, 233, 239, 251, 257, 263, 269, 271, 281, 293, 307, 311, 317, 347, 349, 353, 359, 367, 379, 383, 389, 401, 419, 431, 439, 443
OFFSET
1,1
COMMENTS
Note on terminology: We adopt the shorthand 'semiperfect prime' to denote a prime whose successor is semiperfect. This term is not intended to imply that the prime p itself satisfies the semiperfect property, which is impossible for primes.
Semiperfect primes that can be represented as the sum of some subset of the divisors of p + 1 areA391003.
MAPLE
select(n -> isprime(n) and isA005835(n+1), [seq(2..444)]);
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Peter Luschny, Nov 26 2025
STATUS
approved
Expansion of g/(1 - x^4*g), where g = 1+x*g^2 is the g.f. ofA000108.
+0
0
1, 1, 2, 5, 15, 44, 137, 443, 1473, 4997, 17234, 60244, 212965, 759997, 2734241, 9906337, 36112670, 132361797, 487484793, 1803162895, 6695722220, 24951017572, 93275820198, 349719223200, 1314722803099, 4954734736857, 18715269132457, 70841577996883
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/4)} (k+1) * binomial(2*n-7*k+1,n-4*k)/(2*n-7*k+1).
PROG
(PARI) a(n) = sum(k=0, n\4, (k+1)*binomial(2*n-7*k+1, n-4*k)/(2*n-7*k+1));
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Nov 26 2025
STATUS
approved
Expansion of g/(1 - x^3*g), where g = 1+x*g^2 is the g.f. ofA000108.
+0
0
1, 1, 2, 6, 16, 47, 147, 474, 1571, 5320, 18320, 63959, 225858, 805288, 2894978, 10481813, 38188689, 139900745, 515022101, 1904268957, 7068660708, 26332347288, 98411323603, 368876938837, 1386411201970, 5223754679581, 19727431926834, 74658894271982, 283106506738357
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/3)} (k+1) * binomial(2*n-5*k+1,n-3*k)/(2*n-5*k+1).
PROG
(PARI) a(n) = sum(k=0, n\3, (k+1)*binomial(2*n-5*k+1, n-3*k)/(2*n-5*k+1));
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Nov 26 2025
STATUS
approved
Expansion of g/(1 - x^4*g^2), where g = 1+x*g^2 is the g.f. ofA000108.
+0
0
1, 1, 2, 5, 15, 45, 141, 457, 1521, 5164, 17817, 62293, 220222, 785898, 2827341, 10243147, 37338298, 136845402, 503965327, 1864003768, 6921212392, 25789735687, 96405693388, 361434199571, 1358692671031, 5120187774119, 19339315745299, 73200467759698, 277612432655485
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/4)} (2*k+1) * binomial(2*n-6*k+1,n-4*k)/(2*n-6*k+1).
PROG
(PARI) a(n) = sum(k=0, n\4, (2*k+1)*binomial(2*n-6*k+1, n-4*k)/(2*n-6*k+1));
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Nov 26 2025
STATUS
approved
Expansion of g/(1 - x^3*g^2), where g = 1+x*g^2 is the g.f. ofA000108.
+0
0
1, 1, 2, 6, 17, 51, 161, 524, 1747, 5939, 20510, 71756, 253797, 906032, 3260380, 11814305, 43071858, 157876851, 581469125, 2150809098, 7986558110, 29760593273, 111252691988, 417106577014, 1568001345892, 5909033613693, 22319035449397, 84479358962453, 320388591540279
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/3)} (2*k+1) * binomial(2*n-4*k+1,n-3*k)/(2*n-4*k+1).
PROG
(PARI) a(n) = sum(k=0, n\3, (2*k+1)*binomial(2*n-4*k+1, n-3*k)/(2*n-4*k+1));
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Nov 26 2025
STATUS
approved
Expansion of g/(1 - x^4*g^4), where g = 1+x*g^2 is the g.f. ofA000108.
+0
0
1, 1, 2, 5, 15, 47, 152, 504, 1706, 5872, 20490, 72319, 257723, 926071, 3351552, 12205864, 44698318, 164492726, 608009172, 2256266234, 8402790998, 31395570766, 117652696392, 442095949780, 1665396815980, 6288134065462, 23793282441962, 90208829415539, 342646535562835
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/4)} (4*k+1) * binomial(2*n-4*k+1,n-4*k)/(2*n-4*k+1).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} (4*k+1) * binomial(2*n-4*k,n-4*k).
PROG
(PARI) a(n) = sum(k=0, n\4, (4*k+1)*binomial(2*n-4*k+1, n-4*k)/(2*n-4*k+1));
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Nov 26 2025
STATUS
approved
Expansion of g/(1 - x^4*g^3), where g = 1+x*g^2 is the g.f. ofA000108.
+0
0
1, 1, 2, 5, 15, 46, 146, 477, 1596, 5441, 18833, 66012, 233844, 835898, 3011377, 10922595, 39854562, 146192568, 538789354, 1994108253, 7408576716, 27619927605, 103294688949, 387421997450, 1456930533314, 5492261979350, 20751107671279, 78566524361736, 298041084172961
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/4)} (3*k+1) * binomial(2*n-5*k+1,n-4*k)/(2*n-5*k+1).
PROG
(PARI) a(n) = sum(k=0, n\4, (3*k+1)*binomial(2*n-5*k+1, n-4*k)/(2*n-5*k+1));
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Nov 26 2025
STATUS
approved
Expansion of g/(1 - x^2*g^5), where g = 1+x*g^2 is the g.f. ofA000108.
+0
0
1, 1, 3, 11, 42, 163, 639, 2523, 10015, 39918, 159622, 639951, 2571129, 10348227, 41710908, 168336109, 680096275, 2750205427, 11130353849, 45077337022, 182673844561, 740682995826, 3004691648538, 12194285953927, 49508785417919, 201076207438761, 816914983755602, 3319845510024313
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (5*k+1)*binomial(2*n+k+1,n-2*k)/(2*n+k+1).
G.f.: 1/(2 - B(x)), where B(x) is the g.f. ofA071738.
PROG
(PARI) a(n) = sum(k=0, n\2, (5*k+1)*binomial(2*n+k+1, n-2*k)/(2*n+k+1));
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Nov 26 2025
STATUS
approved
2-valuation of Product_{k <= n} (prime(k) + 1) / (prime(k+1) - prime(k)).
+0
0
0, 0, 1, 1, 2, 3, 2, 2, 2, 4, 4, 8, 7, 7, 7, 10, 10, 11, 11, 11, 13, 13, 15, 16, 14, 13, 13, 14, 15, 14, 14, 19, 20, 20, 21, 21, 23, 23, 23, 25, 25, 26, 26, 31, 30, 30, 31, 31, 34, 35, 34, 34, 37, 37, 38, 38, 40, 40, 43, 42, 42, 43, 43, 43, 45, 44, 44, 45, 45
OFFSET
0,5
COMMENTS
The given product is likely to be an integer for all n, because the cumulated numerators are extremely likely to have more of any given prime factor than the smallish denominators which are the prime gaps. But can it be proved that this is indeed always the case for all prime factors?
The sequence appears to grow slightly sub-linearly: a(10^3) = 460, a(10^4) = 3996, a(10^5) = 35962.
LINKS
M. F. Hasler,Table of n, a(n) for n = 0..10000, Nov 21 2025
EXAMPLE
The first factors of the product are (2+1)/1 = 3, (3+1)/2 = 2, (5+1)/2 = 3, (7+1)/4 = 2, (11+1)/2 = 6, (13+1)/4 = 7/2, (17+1)/2 = 9, (19+1)/4 = 5, (23+1)/6 = 4, (29+1)/2 = 15, (31+1)/6 = 16/3, ...
Therefore, for the product of the first n = 0, 1, 2, 3, ... of these fractions, the cumulated number of powers of 2 is 0, 0, 1, 1, 2, 3, 2, 2, 2, 4, 4, 8, ...
PROG
(PARI) concat(s=0, vector(99, i, s+=valuation((prime(i)+1)/(prime(i+1)-prime(i)), 2)))
CROSSREFS
Cf.A390842,A390843,A390844 (similar for 3-, 5- and 7-valuation).
Cf.A023512 (2-valuation of prime(n) + 1).
KEYWORD
nonn,new
AUTHOR
M. F. Hasler, Nov 21 2025
STATUS
approved
Product_{k <= n} (prime(k) + 1)/A001223(k), whereA001223 lists the prime gaps, rounded to the nearest integer if necessary.
+0
0
1, 3, 6, 18, 36, 216, 756, 6804, 34020, 136080, 2041200, 10886400, 103420800, 2171836800, 23890204800, 191121638400, 1720094745600, 51602842368000, 533229371136000, 9064899309312000, 326336375135232000, 4024815293334528000, 80496305866690560000, 1126948282133667840000, 12678168174003763200000
OFFSET
0,2
COMMENTS
The product is actually conjectured to be an integer for all n. Can anyone prove it?
SequencesA390840,A390841,A390842,A390843 andA390844 are related to this question.
LINKS
M. F. Hasler,Table of n, a(n) for n = 0..99, Nov 21 2025
M. F. Hasler, in reply to Sebastian M. Ruiz,All integers?, PrimenumbersTheory group.io, Nov. 21, 2025.
PROG
(PARI)A390839(n, p=2)=prod(k=1, n, (p+1)/(-p+p=prime(k+1))) \\M. F. Hasler, Nov 21 2025
CROSSREFS
Cf.A080082 (where gap 2*prime(k) occurs first),A001223 (prime gaps).
Cf.A390840 (number of primes <=A080082(n) such that prime(n) | q+1).
Cf.A390841,A390842,A390843,A390844 (2-, 3-, 5- and 7-valuation of the product).
KEYWORD
nonn,less,new
AUTHOR
M. F. Hasler, Nov 21 2025
STATUS
approved


[8]ページ先頭

©2009-2025 Movatter.jp