Movatterモバイル変換


[0]ホーム

URL:


login
A365924
Number of incomplete integer partitions of n, meaning not every number from 0 to n is the sum of some submultiset.
29
0, 0, 1, 1, 3, 3, 6, 7, 12, 14, 22, 25, 38, 46, 64, 76, 106, 124, 167, 199, 261, 309, 402, 471, 604, 714, 898, 1053, 1323, 1542, 1911, 2237, 2745, 3201, 3913, 4536, 5506, 6402, 7706, 8918, 10719, 12364, 14760, 17045, 20234, 23296, 27600, 31678, 37365, 42910, 50371, 57695, 67628, 77300, 90242, 103131, 119997
OFFSET
0,5
COMMENTS
The complement (complete partitions) isA126796.
FORMULA
a(n) =A000041(n) -A126796(n).
EXAMPLE
The a(0) = 0 through a(8) = 12 partitions:
. . (2) (3) (4) (5) (6) (7) (8)
(2,2) (3,2) (3,3) (4,3) (4,4)
(3,1) (4,1) (4,2) (5,2) (5,3)
(5,1) (6,1) (6,2)
(2,2,2) (3,2,2) (7,1)
(4,1,1) (3,3,1) (3,3,2)
(5,1,1) (4,2,2)
(4,3,1)
(5,2,1)
(6,1,1)
(2,2,2,2)
(5,1,1,1)
MATHEMATICA
nmz[y_]:=Complement[Range[Total[y]], Total/@Subsets[y]];
Table[Length[Select[IntegerPartitions[n], Length[nmz[#]]>0&]], {n, 0, 15}]
CROSSREFS
For parts instead of sums we haveA047967/A365919, ranksA080259/A055932.
The complement isA126796, ranksA325781, strictA188431.
These partitions have ranksA365830.
The strict case isA365831.
Row sums ofA365923 without the first column, strictA365545.
A000041 counts integer partitions, strictA000009.
A046663 counts partitions w/o a submultiset summing to k, strictA365663.
A276024 counts positive subset-sums of partitions, strictA284640.
A325799 counts non-subset-sums of prime indices.
A364350 counts combination-free strict partitions.
A365543 counts partitions with a submultiset summing to k, strictA365661.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 26 2023
STATUS
approved


[8]ページ先頭

©2009-2025 Movatter.jp