Movatterモバイル変換


[0]ホーム

URL:


login
A365831
Number of incomplete strict integer partitions of n, meaning not every number from 0 to n is the sum of some submultiset.
25
0, 0, 1, 1, 2, 3, 3, 4, 6, 8, 9, 11, 13, 16, 21, 25, 31, 36, 43, 50, 59, 69, 82, 96, 113, 131, 155, 179, 208, 239, 276, 315, 362, 414, 472, 539, 614, 698, 795, 902, 1023, 1158, 1311, 1479, 1672, 1881, 2118, 2377, 2671, 2991, 3354, 3748, 4194, 4679, 5223, 5815
OFFSET
0,5
EXAMPLE
The strict partition (14,5,4,2,1) has no subset summing to 13 so is counted under a(26).
The a(2) = 1 through a(10) = 9 strict partitions:
(2) (3) (4) (5) (6) (7) (8) (9) (10)
(3,1) (3,2) (4,2) (4,3) (5,3) (5,4) (6,4)
(4,1) (5,1) (5,2) (6,2) (6,3) (7,3)
(6,1) (7,1) (7,2) (8,2)
(4,3,1) (8,1) (9,1)
(5,2,1) (4,3,2) (5,3,2)
(5,3,1) (5,4,1)
(6,2,1) (6,3,1)
(7,2,1)
MATHEMATICA
nmz[y_]:=Complement[Range[Total[y]], Total/@Subsets[y]];
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[nmz[#]]>0&]], {n, 0, 15}]
CROSSREFS
For parts instead of sums we have ranksA080259,A055932.
The strict complement isA188431, non-strictA126796 (ranksA325781).
Row sums ofA365545 without the first column, non-strictA365923.
The non-strict version isA365924, ranksA365830.
A000041 counts integer partitions, strictA000009.
A046663 counts partitions w/o a submultiset summing to k, strictA365663.
A276024 counts positive subset-sums of partitions, strictA284640.
A325799 counts non-subset-sums of prime indices.
A365543 counts partitions with a submultiset summing to k, strictA365661.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 28 2023
STATUS
approved


[8]ページ先頭

©2009-2025 Movatter.jp