Movatterモバイル変換


[0]ホーム

URL:


login
A356931
Number of multiset partitions of the prime indices of n into multisets of odd numbers. Number of factorizations of n into members ofA066208.
3
1, 1, 0, 2, 1, 0, 0, 3, 0, 2, 1, 0, 0, 0, 0, 5, 1, 0, 0, 4, 0, 2, 1, 0, 2, 0, 0, 0, 0, 0, 1, 7, 0, 2, 0, 0, 0, 0, 0, 7, 1, 0, 0, 4, 0, 2, 1, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 2, 0, 11, 0, 0, 1, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 12, 0, 2, 1, 0, 2, 0
OFFSET
1,4
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n ofA112798.
FORMULA
a(n) = 0 if n is inA324929, otherwise a(n) =A001055(n).
EXAMPLE
The a(440) = 21 multiset partitions of {1,1,1,3,5}:
{1}{1}{1}{3}{5} {1}{1}{1}{35} {1}{1}{135} {1}{1135} {11135}
{1}{1}{13}{5} {1}{11}{35} {11}{135}
{1}{11}{3}{5} {11}{13}{5} {111}{35}
{1}{1}{3}{15} {1}{13}{15} {113}{15}
{11}{3}{15} {13}{115}
{1}{3}{115} {3}{1115}
{1}{5}{113} {5}{1113}
{3}{111}{5}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], And@@(OddQ[Times@@primeMS[#]]&/@#)&]], {n, 100}]
CROSSREFS
Positions of 0's areA324929, complementA066208.
A000688 counts factorizations into prime powers.
A001055 counts factorizations.
A001221 counts prime divisors, sumA001414.
A001222 counts prime factors with multiplicity.
A056239 adds up prime indices, row sums ofA112798.
A356069 counts gapless divisors, initialA356224 (complementA356225).
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 08 2022
STATUS
approved


[8]ページ先頭

©2009-2025 Movatter.jp